[R] Quirks with system.time and simulations

Roger D. Peng rpeng at jhsph.edu
Mon Jun 14 02:50:45 CEST 2004


I think the first time is potentially much slower because of a 
garbage collection.  R-devel has a flag `gcFirst' for 
system.time() which (I think) forces a garbage collection before 
timing.

-roger

Patrick Connolly wrote:
> I tried the code that Richard O'Keefe posted last week, to wit:
> 
> library(chron)
>     ymd.to.POSIXlt <-
>         function (y, m, d) as.POSIXlt(chron(julian(y=y, x=m, d=d)))
>     n <- 100000
>     y <- sample(1970:2004, n, replace=TRUE)
>     m <- sample(1:12,      n, replace=TRUE)
>     d <- sample(1:28,      n, replace=TRUE)
>     system.time(ymd.to.POSIXlt(y, m, d))
>     [1]  8.78  0.10 31.76  0.00  0.00
>     system.time(as.POSIXlt(paste(y,m,d, sep="-")))
>     [1] 14.64  0.13 53.30  0.00  0.00
> 
> 
> On a somewhat newer machine, I got
> 
> $ R --vanilla
> 
> R : Copyright 2004, The R Foundation for Statistical Computing
> Version 1.9.0  (2004-04-12), ISBN 3-900051-00-3
> 
> [...]
> 
> 
> 
>>library(chron)
>>    ymd.to.POSIXlt <-
> 
> +         function (y, m, d) as.POSIXlt(chron(julian(y=y, x=m, d=d)))
> 
>>    n <- 100000
>>    y <- sample(1970:2004, n, replace=TRUE)
>>    m <- sample(1:12,      n, replace=TRUE)
>>    d <- sample(1:28,      n, replace=TRUE)
>>
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.67 0.24 2.01 0.00 0.00
> 
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 3.06 0.02 3.08 0.00 0.00
> 
> 
> But then I tried a few more times...
> 
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.09 0.04 1.13 0.00 0.00
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.11 0.09 1.20 0.00 0.00
> 
> 
> The second time is a lot faster, but subsequent ones don't "improve further".
> '
> But with the "standard" function,
> 
> 
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 2.64 0.02 2.66 0.00 0.00
> 
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 2.82 0.03 2.85 0.00 0.00
> 
> ... it does improve slightly but rather a lot less.
> 
> 
> THEN
> 
> If I compare the two methods in the reverse order,
> 
> 
> $ R --vanilla
> 
> R : Copyright 2004, The R Foundation for Statistical Computing
> Version 1.9.0  (2004-04-12), ISBN 3-900051-00-3
> 
> [....]
> 
> 
> 
>>library(chron)
>>    ymd.to.POSIXlt <-
> 
> +         function (y, m, d) as.POSIXlt(chron(julian(y=y, x=m, d=d)))
> 
>>    n <- 100000
>>    y <- sample(1970:2004, n, replace=TRUE)
>>    m <- sample(1:12,      n, replace=TRUE)
>>    d <- sample(1:28,      n, replace=TRUE)
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 3.66 0.02 3.76 0.00 0.00
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.65 0.05 1.70 0.00 0.00
> 
>>
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 2.59 0.02 2.61 0.00 0.00
> 
>>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> 
> [1] 2.73 0.00 2.74 0.00 0.00
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.29 0.01 1.30 0.00 0.00
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 0.94 0.00 0.94 0.00 0.00
> 
>>system.time(ymd.to.POSIXlt(y, m, d))
> 
> [1] 1.06 0.01 1.07 0.00 0.00
> 
> 
> 
> It seems as though the first simulation makes it "easier" for
> subsequent simulations of the same type AND also for simulations of a
> somewhat different type also.  The degree to which it "helps" varies
> according to just what is being run (no surprise there).  What I can't
> figure out is what is happening that makes it quicker for second and
> subsequent runs.
> 
> I even tried doing a gc() and setting seeds before each run to make a
> more direct comparison, but it made no difference other than being
> slightly less variable.  I have seen a similar phenomenon in other
> types of simulations.
> 
> In the case of this code, it makes no difference whether n is 100 or
> 10000000.  Would that be attibutable to lazy evaluation?
> 
> 
> 
>>version
> 
>          _                
> platform i686-pc-linux-gnu
> arch     i686             
> os       linux-gnu        
> system   i686, linux-gnu  
> status                    
> major    1                
> minor    9.0              
> year     2004             
> month    04               
> day      12               
> language R         
> 
> 
> It's not exactly a problem, but it could have a bearing on comparing
> processing times which is something that happens from time to time.
> In the comparison that gave rise to the code above, the order would
> have made a substantial difference to the perceived effectiveness of
> Richard's code.
> 
> 

-- 
Roger D. Peng
http://www.biostat.jhsph.edu/~rpeng/




More information about the R-help mailing list