[R] GLMM (lme4) vs. glmmPQL output
Göran Broström
gb at stat.umu.se
Sat Jan 10 12:03:25 CET 2004
On Fri, Jan 09, 2004 at 12:26:21PM -0600, Douglas Bates wrote:
> I believe the distinction is explained in the lme4 documentation but,
> in any case, the standard errors and the approximate log-likelihood
> for glmmPQL are from the lme model that is the last step in the
> optimization. The corresponding quantities from GLMM are from another
> approximation that should be more reliable.
It would be interesting to see what glmmML, which uses yet another
approximation, gives on this particular data set. Could you (Dieter)
try it, and perhaps also share your data with us?
>
> "Dieter Menne" <dieter.menne at menne-biomed.de> writes:
>
> > Dear List,
> >
> > As I understand, GLMM (in experimental lme4) and glmmPQL (MASS) do
> > similar things using somewhat different methods. Trying both,
> > I get the same coefficients, but markedly different std. errors and
> > p-values.
> > Any help in understanding the models tested by both procedures?
> >
> > Dieter Menne
> >
> >
> > UseMASS<-T # must restart R after changing because of nlme/lme4 clash
> > if (UseMASS){
> > library(MASS)
> > summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
> > family = binomial, data = bacteria))
> > } else
> > {
> > library(lme4)
> > summary(GLMM(y ~ trt + I(week > 2), random = ~ 1 | ID,
> > family = binomial, data = bacteria,method="PQL"))
> > }
> >
> > (MASS output)
> > Fixed effects: y ~ trt + I(week > 2)
> > Value Std.Error DF t-value p-value
> > (Intercept) 3.412012 0.5185028 169 6.580509 0.0000
> > trtdrug -1.247355 0.6440627 47 -1.936698 0.0588
> > trtdrug+ -0.754327 0.6453971 47 -1.168780 0.2484
> > I(week > 2)TRUE -1.607256 0.3583378 169 -4.485310 0.0000
> >
> > (lme4 output)
> > Fixed effects: y ~ trt + I(week > 2)
> > Estimate Std. Error DF z value Pr(>|z|)
> > (Intercept) 3.41202 3.93293 169 0.8676 0.3856
> > trtdrug -1.24736 1.52156 47 -0.8198 0.4123
> > trtdrug+ -0.75433 1.21963 47 -0.6185 0.5363
> > I(week > 2)TRUE -1.60726 2.19660 169 -0.7317 0.4644
> >
> > ______________________________________________
> > R-help at stat.math.ethz.ch mailing list
> > https://www.stat.math.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>
> --
> Douglas Bates bates at stat.wisc.edu
> Statistics Department 608/262-2598
> University of Wisconsin - Madison http://www.stat.wisc.edu/~bates/
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
--
Göran Broström tel: +46 90 786 5223
Department of Statistics fax: +46 90 786 6614
Umeå University http://www.stat.umu.se/egna/gb/
SE-90187 Umeå, Sweden e-mail: gb at stat.umu.se
More information about the R-help
mailing list