[R] using nls to fit a four parameter logistic model
sraghavan@mmm.com
sraghavan at mmm.com
Mon Aug 16 18:25:57 CEST 2004
Shalini Raghavan
3M Pharmaceuticals Research
Building 270-03-A-10, 3M Center
St. Paul, MN 55144
E-mail: sraghavan at mmm.com
Tel: 651-736-2575
Fax: 651-733-5096
----- Forwarded by Shalini Raghavan/US-Corporate/3M/US on 08/16/2004 11:25
AM -----
Shalini
Raghavan/US-Corpo
rate/3M/US To
r-help at stat.math.ethz.ch.
08/16/2004 08:57 cc
AM
Subject
Fw: using nls to fit a four
parameter logistic model
I am working on what appears to be a fairly simple problem for the
following data
test=data.frame(cbind(conc=c(25000, 12500, 6250, 3125, 1513, 781, 391,
195, 97.7, 48.4, 24, 12, 6, 3, 1.5, 0.001),
il10=c(330269, 216875, 104613, 51372, 26842, 13256, 7255, 3049, 1849, 743,
480, 255, 241, 128, 103, 50)))
> test
conc il10
1 25000.000 330269
2 12500.000 216875
3 6250.000 104613
4 3125.000 51372
5 1513.000 26842
6 781.000 13256
7 391.000 7255
8 195.000 3049
9 97.700 1849
10 48.400 743
11 24.000 480
12 12.000 255
13 6.000 241
14 3.000 128
15 1.500 103
16 0.001 50
I am able to fit the above data to the equation
> nls(log(il10)~A+(B-A)/(1+exp((xmid-log(conc))/scal)),data=test,
+ start = list(A=log(0.001), B=log(100000),
+ xmid=log(6000),scal=0.8))
Nonlinear regression model
model: log(il10) ~ A + (B - A)/(1 + exp((xmid - log(conc))/scal))
data: test
A B xmid scal
3.796457 14.705159 6.410144 2.507653
residual sum-of-squares: 0.1667462
But in attempting to achieve a fit to what is commonly known as the hill
equation, which is a four parameter fit that is used widely in biological
data analysis
nls(log(il10)~A+(B-A)/(1+(log(conc)/xmid )^scal),data=test,
+ start = list(A=log(0.001), B=log(100000), xmid=log(6000),scal=0.8))
Nonlinear regression model
model: log(il10) ~ A + (B - A)/(1 + (log(conc)/xmid )^scal)
Error in numericDeriv(form[[3]], names(ind), env) :
Missing value or an Infinity produced when evaluating the model
Please would someone offer a suggestion
Shalini
More information about the R-help
mailing list