[R] question about linear models.
ivan.borozan@utoronto.ca
ivan.borozan at utoronto.ca
Mon Apr 19 19:30:55 CEST 2004
hi there,
i have the following table with two factors A, B each respectively with 3 and 4
levels (unbalanced design)
>S1
samples A B
1 1.3398553 0 0
2 0.8455924 0 0
3 1.0290893 0 0
4 1.2720512 0 0
5 1.2071754 0 0
6 1.1859539 0 0
7 2.7399659 2 3
8 1.2476911 2 3
9 2.6389479 2 2
10 1.6914068 1 2
11 2.2260561 2 1
12 1.2955187 1 1
13 1.6526140 1 3
14 2.3159151 2 3
15 2.3905009 1 2
16 2.9520105 2 2
17 1.9478868 1 1
18 1.9936118 1 1
19 1.3775338 1 3
20 1.9638190 2 2
21 1.4697860 1 2
22 2.2028858 2 3
23 2.4024771 2 1
24 1.9935864 1 1
i fit two different models
fit1<-aov(samples~A + B,data=S1,contrasts = list(A = contr.treatment, B =
contr.treatment))
fit2<-aov(samples~A,data=S1,contrasts = list(A = contr.treatment))
fit3<-aov(samples~B,data=S1,contrasts = list(B = contr.treatment))
and using
>anova(fit1,fit2)
Analysis of Variance Table
Model 1: samples ~ A + B
Model 2: samples ~ A
Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 2.74820
2 21 3.14667 -2 -0.39847 1.3774 0.2763
i get B as not significant and
>anova(fit1,fit3)
Analysis of Variance Table
Model 1: samples ~ A + B
Model 2: samples ~ B
Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 2.7482
2 20 4.2391 -1 -1.4909 10.308 0.004604 **
A as significant.
however if i do
>anova(fit3)
Analysis of Variance Table
Response: samples
Df Sum Sq Mean Sq F value Pr(>F)
B 3 3.7241 1.2414 5.8567 0.004854 **
Residuals 20 4.2391 0.2120
i get B as significant and
>anova(fit2)
Analysis of Variance Table
Response: samples
Df Sum Sq Mean Sq F value Pr(>F)
A 2 4.8165 2.4083 16.072 5.835e-05 ***
Residuals 21 3.1467 0.1498
A as significant.
Should i conclude that A is significant and B is not or rather that both factors
are significant ?
all the best
More information about the R-help
mailing list