[R] gee and geepack: different results?

mendola@dssm.unipa.it mendola at dssm.unipa.it
Fri Oct 24 18:22:05 CEST 2003


Hi, I downloaded both gee and geepack, and I am trying to understand the
differences between the two libraries.
I used the same data and estimated the same model, with a correlation
structure autoregressive of order 1. Surprisingly for me, I found very
different results. Coefficients are slightly different in value but
sometimes opposite in sign.
Moreover, the estimate of rho (correlation coefficient) given by gee is
0.5759 (see element 1.2 in the working correlation matrix) while the
estimate given by geese is 0.4519.
Could somebody explain me what happened?


Data are in  dati22, which is only a part of the data for the study I
intend to perform. Here what I did ,using first gee and then geese:

> str(dati22)
`data.frame':   47 obs. of  7 variables:
 $ TR    : Factor w/ 4 levels "7","8","9","11": 1 1 1 1 1 1 1 1 1 1 ...
 $ STAT  : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 2 2 2 3 3 ...
 $ PIANTA: int  2 2 2 2 2 2 2 2 41 41 ...
 $ ANLEP : int  1999 1998 1999 1998 1999 1998 1999 1998 1999 1998 ...
 $ eta   : int  12 11 10 9 11 10 11 10 14 13 ...
 $ VCRE  : num  5.3 6.9 11 9.9 7.9 9.2 14.2 11.9 10.5 10 ...
 $ temp  : num  19.7 20.0 19.7 20.0 19.7 ...


> mio1.2<- gee(VCRE ~ TR + STAT + temp + eta, id = PIANTA, +
 + data = dati22,  family = Gamma, corstr = "AR-M", Mv = 1)

> summary(mio1.2)

 GEE:  GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
 gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
 Link:                      Reciprocal
 Variance to Mean Relation: Gamma
 Correlation Structure:     AR-M , M = 1

Call:
gee(formula = VCRE ~ TR + STAT + temp + eta, id = PIANTA, data = dati22,
    family = Gamma, corstr = "AR-M", Mv = 1)

Summary of Residuals:
       Min         1Q     Median         3Q        Max
-4.5154238 -2.0766622 -0.2153521  0.9418182  6.3871421


Coefficients:
                Estimate  Naive S.E.     Naive z Robust S.E.    Robust z
(Intercept)  0.411995251 0.174052364  2.36707644 0.131632816  3.12988253
TR8         -0.001154422 0.021191593 -0.05447549 0.011807163 -0.09777305
TR9          0.019559907 0.024379471  0.80231056 0.008993803  2.17482050
TR11        -0.041092894 0.021609580 -1.90160537 0.015384050 -2.67113620
STAT2        0.023886745 0.014219390  1.67987130 0.013543550  1.76369899
STAT3        0.045749728 0.016844262  2.71604237 0.012862504  3.55682917
temp        -0.020141682 0.008819798 -2.28368975 0.006851784 -2.93962600
eta          0.008021081 0.001465212  5.47434944 0.001129986  7.09838725

Estimated Scale Parameter:  0.1049601
Number of Iterations:  13

Working Correlation
       [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]
[1,] 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633 0.0364 0.0210
[2,] 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633 0.0364
[3,] 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633
[4,] 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099
[5,] 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909
[6,] 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315
[7,] 0.0364 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758
[8,] 0.0210 0.0364 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000

USING geese:

> mio1.2pack<-geese(VCRE ~ TR + STAT + temp + eta, id = PIANTA, data =
dati22, +
    + family = Gamma, corstr = "ar1")


Coefficients:
            estimate  san.se   wald        p
(Intercept)  0.44799 0.18279  6.007 1.43e-02
TR8          0.00444 0.00985  0.203 6.52e-01
TR9          0.02182 0.00632 11.923 5.54e-04
TR11        -0.03728 0.01407  7.024 8.04e-03
STAT2        0.02116 0.01476  2.056 1.52e-01
STAT3        0.04270 0.01245 11.758 6.06e-04
temp        -0.02233 0.00973  5.273 2.17e-02
eta          0.00865 0.00136 40.683 1.79e-10

Scale Model:
 Scale Link:                identity

 Estimated Scale Parameters:
            estimate san.se wald       p
(Intercept)    0.081 0.0287 7.98 0.00474

Correlation Model:
 Correlation Structure:     ar1
 Correlation Link:          identity

 Estimated Correlation Parameters:
      estimate san.se wald      p
alpha    0.452  0.272 2.77 0.0963

Returned Error Value:    0
Number of clusters:   6   Maximum cluster size: 8


Thanks, Daria


****************************

Daria Mendola
Department of Statistics and Matematics
"Silvio Vianelli"
University di Palermo
Viale delle Scienze - Edificio 13
90128 Palermo, Italy
phone  +39 091 6626210
fax  +39 091 485726
email: mendola at dssm.unipa.it




More information about the R-help mailing list