[R] Help : stablereg parameter interpretation
pfm401@lineone.net
pfm401 at lineone.net
Tue Mar 25 13:33:08 CET 2003
Dear all,
I am having difficulty interpreting the parameter estimates from the stablereg
function. Specifically I am trying to keep things simple to start with by
using stablereg to fit a normal distribution to a simulated data set from
that distribution (in order to understand the way that stablereg reports
parameter estimates). I cannot work out the scale on which the dispersion
parameter (some function of the standard deviation if the data are normal)
is reported. The location parameter i.e. the mean is obvious.
For example:
set.seed(1234)
# Simulate normal data with mean 5 and sd 2 using rstable> normal5.2<-rstable(10000,loc=5,disp=2/sqrt(2),skew=0,tail=2)
mean(normal5.2)
[1] 5.010073
sd(normal5.2)
[1] 2.005362
# summary(lm(normal5.2~1)) yields similar results
fittest<-stablereg(y=normal5.2,loc=~1,disp=~1,iloc=5,idisp=2/sqrt(2),iskew=0,itail=2,oskew=F,otail=F)
# Normal model, as skew=0 and tail=2
yields :
Call:
stablereg(y = normal5.2, loc = ~1, disp = ~1, iloc = 5, idisp = 2/sqrt(2),
iskew = 0, itail = 2, oskew = F, otail = F)
-Log likelihood 21498.69
No. of obs 10000
No. of estimated parameters 2
No. of parameters 4
Degrees of freedom 9998
AIC 21500.69
Iterations 6
Location parameters
~1
estimate se
(Intercept) 5.015 0.02011
Dispersion parameters
estimate se
1 0.2888 0.008753
Correlations:
1 2
1 1.000000 -0.001761
2 -0.001761 1.000000
so that 5.015 is indeed the (approx.) mean. As dispersion uses a log link
function and disp=sd/sqrt(2) for the normal (I think!) I tried
sqrt(2)*exp(0.2888)
which gives 1.887727
and 95% confidence limits at sqrt(2)*exp(0.2888+-1.96*0.008753)
i.e. (1.854968,1.921065)
Without going into more detail I have tried this for different parameter
values and simulations and cannot resolve the dispersion parameter to the
standard deviation. Clearly I am missing something!!
Any help is much appreciated.
Thanks in advance,
Paul.
More information about the R-help
mailing list