[R] Excel can do what R can't?????

Spencer Graves spencer.graves at pdf.com
Thu Jul 17 05:38:48 CEST 2003


Are you familiar with "How to Solve It" by George Polya?  Among other 
things, Polya discusses the value of solving hypersimplified versions of 
a problem, because the solutions to the simple problems may help you see 
how you can solve the real problem.  Am I correct that prior to the 
completion of the transcontinental railroad, the quickest path from 
Toronto to Vancouver was by way of Tierra del Fuego?

spencer graves

Spencer Graves wrote:
> I don't expect you to have a complete solution from the simplifications. 
>  I expect you to learn something from the toy problems that can help you 
> solve the real problems.
> 
> Michael Rennie wrote:
> 
>> Hmmm.
>>
>> I tried entering 'Hgtmod = Hgt' at the end of my 'optim' function, but 
>> that didn't help me any- still getting poor optimizations.  Perhaps 
>> this isn't working to set a condition, as I was hoping it to.  I think 
>> that if I can set the condition Hgmod = Hgt, then it should be able to 
>> find reasonable solutions to this problem set, since that seems to be 
>> the trick in my Excel 'solver' function.
>>
>> Also, I'm a little hesitant to simplify this too much in terms of 
>> reducing the model, becuase I need this thing to work over 365 
>> iterations, as it does in excel.  I've at least cleaned up some of the 
>> commenting so it should be a bit more straightforward.  I tried making 
>> the arrays more clear with tabs, but lost them upon pasting them into 
>> this file.
>>
>> I've included below the code I am currently using with my temp.dat 
>> file attached (it's also below so someone can copy and paste it into a 
>> text file named 'temp.dat')- that's all anyone should need to play 
>> around with this if they are feeling so inclined by cutting and 
>> pasting into R.
>>
>> Thanks again,
>>
>> Mike
>>
>>
>> #Weight at time 0
>> Wo<- 9.2
>>
>> #Hg concentration at time 0 (ugHg/g wet weight)
>> Hgo<- 0.08
>> #Weight at time t
>> Wt<- 32.2
>>
>> #Hg concentration at time t (ugHg/g wet weight) Hgt<- 0.110
>>
>> #Prey methylmercury concentration (as constant)
>> Hgp<- 0.033
>>
>> #Prey caloric value (as constant)
>> Pc<- 800
>>
>> #Energy density of fish (as constant, calories)
>> Ef <- 1000
>>
>> #Maturity status, 0=immature, 1=mature
>> Mat<- 0
>>
>> #Sex, 1=male, 2=female
>> Sex<- 1
>>
>> #USER INPUT ABOVE
>>
>> #Bioenergetics parameters for perch
>> CA <- 0.25
>> CB <- 0.73  #same as 1+(-0.27)- convert g/g/d to g/d * Pc to get cal/d
>> CQ <- 2.3
>> CTO <- 23
>> CTM <- 28
>> Zc<- (log(CQ))*(CTM-CTO)
>> Yc<- (log(CQ))*(CTM-CTO+2)
>> Xc<- ((Zc^2)*(1+(1+40/Yc)^0.5)^2)/400
>>
>> RA <- 34.992  #0.0108*3240 cal/g 02, converting weight of 02 to cal
>> RB <- 0.8   #same as 1+(-0.2) see above...
>> RQ <- 2.1
>> RTO <- 28
>> RTM <- 33
>> Za <- (log(RQ))*(RTM-RTO)
>> Ya<- (log(RQ))*(RTM-RTO+2)
>> Xa<- ((Za^2)*(1+(1+40/Ya)^0.5)^2)/400
>>
>> S <- 0.172
>>
>> FA <- 0.158
>> FB <- -0.222
>> FG <- 0.631
>>
>> UA<- 0.0253
>> UB<- 0.58
>> UG<- -0.299
>>
>> #Mass balance model parameters
>> EA <- 0.002938
>> EB <- -0.2
>> EQ <- 0.066
>> a <- 0.8
>>
>> #Specifying sex-specific parameters
>>
>> GSI<- NULL
>>
>> if (Sex==1) GSI<-0.05 else if (Sex==2) GSI<-0.17
>> #Bring in temp file
>>
>> temper <- scan("temp.dat", na.strings = ".", list(Day=0, jday=0, Temp=0))
>>
>> Day<-temper$Day ; jday<-temper$jday ; Temp<-temper$Temp ;
>> temp<- cbind (Day, jday, Temp)
>> #Day = number of days modelled, jday=julian day, Temp = daily avg. temp.
>> #temp [,2]
>>
>> Vc<-(CTM-(temp[,3]))/(CTM-CTO)
>> Vr<-(RTM-(temp[,3]))/(RTM-RTO)
>>
>> comp<- cbind (Day, jday, Temp, Vc, Vr)
>>
>> #comp
>>
>> bio<-matrix(NA, ncol=13, nrow=length(Day))
>> W<-NULL
>> C<-NULL
>> ASMR<-NULL
>> SMR<-NULL
>> A<-NULL
>> F<-NULL
>> U<-NULL
>> SDA<-NULL
>> Gr<-NULL
>> Hg<-NULL
>> Ed<-NULL
>> GHg<-NULL
>> K<-NULL
>> Expegk<-NULL
>> EGK<-NULL
>> p<-NULL
>> ACT<-NULL
>>
>>
>> p <- 1 #  0.558626306252032 ACT <- 2 #  1.66764519286918
>>
>> q<-c(p,ACT)
>>  
>> #introduce function to solve
>> f <- function (q, Hgtmod)
>> {
>>
>> M<- length(Day) #number of days iterated
>>
>> for (i in 1:M)
>> {
>>
>> #Bioenergetics model
>> if (Day[i]==1) W[i] <- Wo else
>> if (jday[i]==121 && Mat==1) W[i] <- (W[i-1]-(W[i-1]*GSI*1.2)) else 
>> W[i] <- (W[i-1]+(Gr[i-1]/Ef))
>>
>> C[i]<- q[1]*CA*(W[i]^CB)*((comp[i,4])^Xc)*(exp(Xc*(1-(comp[i,4]))))*Pc
>>
>> ASMR[i]<- q[2]*RA*(W[i]^RB)*((comp[i,5])^Xa)*(exp(Xa*(1-(comp[i,5]))))
>>
>> SMR[i]<- (ASMR[i]/q[2])
>>
>> A[i]<- (ASMR[i]-SMR[i])
>>
>> F[i]<- (FA*((comp[i,3])^FB)*(exp(FG*p))*C[i])
>>
>> U[i]<- (UA*((comp[i,3])^UB)*(exp(UG*p))*(C[i]-F[i]))
>>
>> SDA[i]<- (S*(C[i]-F[i]))
>>
>> Gr[i]<- (C[i]-(ASMR[i]+F[i]+U[i]+SDA[i]))
>>
>> #Trudel MMBM
>>
>> if (Day[i]==1) Hg[i] <- Hgo else Hg[i] <- 
>> a*Hgp*(C[i-1]/Pc/W[i-1])/EGK[i-1]*(1-
>> Expegk[i-1])+(Hg[i-1]*Expegk[i-1])
>>
>> Ed[i]<- EA*(W[i]^EB)*(exp(EQ*(comp[i,3])))
>>
>> GHg[i] <- Gr[i]/Ef/W[i]
>>
>> if (Sex==1) 
>> K[i]<-(((0.1681*(10^(1.3324+(0.000453*Hg[i])))/1000)/Hg[i])*GSI)/M else
>> if (Sex==2) 
>> K[i]<-(((0.1500*(10^(0.8840+(0.000903*Hg[i])))/1000)/Hg[i])*GSI)/M
>> # = dw/ww conversion * gonad ~ body conc'n function(ng/g) / convert to 
>> ug/g # then express as Q times GSI gives K / M gives daily K
>>
>> EGK[i] <- (Ed[i] + GHg[i] + (K[i]*Mat))
>>
>> Expegk[i] <- exp(-1*EGK[i])
>>
>> bio<- cbind(W, C, ASMR, SMR, A, F, U, SDA, Gr, Ed, GHg, EGK, Hg)
>>
>> }
>>
>> dimnames (bio) <-list(NULL, c
>> ("W", "C", "ASMR", "SMR", "A", "F", "U", "SDA", "Gr", "Ed", "GHg", 
>> "EGK", "Hg"))
>>
>> bioday<-cbind(jday, W, C, ASMR, SMR, A, F, U, SDA, Gr, Ed, GHg, EGK, Hg)
>>
>> dimnames (bioday) <-list(NULL, c
>> ("jday", "W", "C", "ASMR", "SMR", "A", "F", "U", "SDA", "Gr", "Ed", 
>> "GHg", "EGK"
>> , "Hg"))
>>
>>
>> Wtmod<- bioday [length(W),2]
>> Wtmod
>>
>> Hgtmod<- bioday [length(Hg),14]
>> Hgtmod
>>
>> q
>>
>> f <- 1000000000*((((Wt-Wtmod)^2)/Wt) + (((Hgt-Hgtmod)^2)/Hgt)) ; f
>> }
>>
>> optim(q, f, method = "L-BFGS-B",
>>     lower = c(0.2, 2), upper=c(2, 3),
>> Hgtmod = Hgt)
>>
>> #-----------------------------
>>
>> Temp.dat:
>>
>> 1       153     9.4
>> 2       154     9.6
>> 3       155     9.8
>> 4       156     10
>> 5       157     10.2
>> 6       158     10.4
>> 7       159     10.6
>> 8       160     10.8
>> 9       161     11
>> 10      162     11.2
>> 11      163     11.4
>> 12      164     11.6
>> 13      165     11.8
>> 14      166     12
>> 15      167     12.3
>> 16      168     12.5
>> 17      169     12.7
>> 18      170     12.9
>> 19      171     13.1
>> 20      172     13.4
>> 21      173     13.6
>> 22      174     13.8
>> 23      175     14
>> 24      176     14.2
>> 25      177     14.5
>> 26      178     14.7
>> 27      179     14.9
>> 28      180     15.1
>> 29      181     15.4
>> 30      182     15.6
>> 31      183     15.8
>> 32      184     16
>> 33      185     16.2
>> 34      186     16.5
>> 35      187     16.7
>> 36      188     16.9
>> 37      189     17.1
>> 38      190     17.3
>> 39      191     17.5
>> 40      192     17.7
>> 41      193     17.9
>> 42      194     18.1
>> 43      195     18.3
>> 44      196     18.5
>> 45      197     18.7
>> 46      198     18.9
>> 47      199     19
>> 48      200     19.2
>> 49      201     19.4
>> 50      202     19.5
>> 51      203     19.7
>> 52      204     19.9
>> 53      205     20
>> 54      206     20.2
>> 55      207     20.3
>> 56      208     20.4
>> 57      209     20.5
>> 58      210     20.7
>> 59      211     20.8
>> 60      212     20.9
>> 61      213     21
>> 62      214     21.1
>> 63      215     21.2
>> 64      216     21.3
>> 65      217     21.3
>> 66      218     21.4
>> 67      219     21.5
>> 68      220     21.5
>> 69      221     21.6
>> 70      222     21.6
>> 71      223     21.6
>> 72      224     21.7
>> 73      225     21.7
>> 74      226     21.7
>> 75      227     21.7
>> 76      228     21.7
>> 77      229     21.7
>> 78      230     21.7
>> 79      231     21.6
>> 80      232     21.6
>> 81      233     21.6
>> 82      234     21.5
>> 83      235     21.5
>> 84      236     21.4
>> 85      237     21.3
>> 86      238     21.3
>> 87      239     21.2
>> 88      240     21.1
>> 89      241     21
>> 90      242     20.9
>> 91      243     20.8
>> 92      244     20.7
>> 93      245     20.5
>> 94      246     20.4
>> 95      247     20.3
>> 96      248     20.2
>> 97      249     20
>> 98      250     19.9
>> 99      251     19.7
>> 100     252     19.5
>> 101     253     19.4
>> 102     254     19.2
>> 103     255     19
>> 104     256     18.9
>> 105     257     18.7
>> 106     258     18.5
>> 107     259     18.3
>> 108     260     18.1
>> 109     261     17.9
>> 110     262     17.7
>> 111     263     17.5
>> 112     264     17.3
>> 113     265     17.1
>> 114     266     16.9
>> 115     267     16.7
>> 116     268     16.5
>> 117     269     16.2
>> 118     270     16
>> 119     271     15.8
>> 120     272     15.6
>> 121     273     15.4
>> 122     274     15.1
>> 123     275     14.9
>> 124     276     14.7
>> 125     277     14.5
>> 126     278     14.2
>> 127     279     14
>> 128     280     13.8
>> 129     281     13.6
>> 130     282     13.4
>> 131     283     13.1
>> 132     284     12.9
>> 133     285     12.7
>> 134     286     12.5
>> 135     287     12.3
>> 136     288     12
>> 137     289     11.8
>> 138     290     11.6
>> 139     291     11.4
>> 140     292     11.2
>> 141     293     11
>> 142     294     10.8
>> 143     295     10.6
>> 144     296     10.4
>> 145     297     10.2
>> 146     298     10
>> 147     299     9.8
>> 148     300     9.6
>> 149     301     9.4
>> 150     302     9.3
>> 151     303     9.1
>> 152     304     8.9
>> 153     305     8.7
>> 154     306     8.6
>> 155     307     8.4
>> 156     308     8.2
>> 157     309     8.1
>> 158     310     7.9
>> 159     311     7.8
>> 160     312     7.6
>> 161     313     7.5
>> 162     314     7.3
>> 163     315     7.2
>> 164     316     7
>> 165     317     6.9
>> 166     318     6.8
>> 167     319     6.7
>> 168     320     6.5
>> 169     321     6.4
>> 170     322     6.3
>> 171     323     6.2
>> 172     324     6.1
>> 173     325     6
>> 174     326     5.8
>> 175     327     5.7
>> 176     328     5.6
>> 177     329     5.5
>> 178     330     5.5
>> 179     331     5.4
>> 180     332     5.3
>> 181     333     5.2
>> 182     334     5.1
>> 183     335     5
>> 184     336     5
>> 185     337     4.9
>> 186     338     4.8
>> 187     339     4.7
>> 188     340     4.7
>> 189     341     4.6
>> 190     342     4.5
>> 191     343     4.5
>> 192     344     4.4
>> 193     345     4.4
>> 194     346     4.3
>> 195     347     4.3
>> 196     348     4.2
>> 197     349     4.2
>> 198     350     4.1
>> 199     351     4.1
>> 200     352     4
>> 201     353     4
>> 202     354     4
>> 203     355     3.9
>> 204     356     3.9
>> 205     357     3.8
>> 206     358     3.8
>> 207     359     3.8
>> 208     360     3.8
>> 209     361     3.7
>> 210     362     3.7
>> 211     363     3.7
>> 212     364     3.6
>> 213     365     3.6
>> 214     366     3.6
>> 215     1       3.2
>> 216     2       3.2
>> 217     3       3.2
>> 218     4       3.2
>> 219     5       3.2
>> 220     6       3.2
>> 221     7       3.2
>> 222     8       3.2
>> 223     9       3.2
>> 224     10      3.2
>> 225     11      3.2
>> 226     12      3.2
>> 227     13      3.2
>> 228     14      3.2
>> 229     15      3.2
>> 230     16      3.2
>> 231     17      3.2
>> 232     18      3.2
>> 233     19      3.2
>> 234     20      3.2
>> 235     21      3.2
>> 236     22      3.2
>> 237     23      3.2
>> 238     24      3.2
>> 239     25      3.2
>> 240     26      3.2
>> 241     27      3.2
>> 242     28      3.2
>> 243     29      3.2
>> 244     30      3.2
>> 245     31      3.2
>> 246     32      3.2
>> 247     33      3.2
>> 248     34      3.2
>> 249     35      3.2
>> 250     36      3.2
>> 251     37      3.2
>> 252     38      3.2
>> 253     39      3.2
>> 254     40      3.2
>> 255     41      3.2
>> 256     42      3.2
>> 257     43      3.2
>> 258     44      3.2
>> 259     45      3.2
>> 260     46      3.2
>> 261     47      3.2
>> 262     48      3.2
>> 263     49      3.2
>> 264     50      3.2
>> 265     51      3.2
>> 266     52      3.2
>> 267     53      3.2
>> 268     54      3.3
>> 269     55      3.3
>> 270     56      3.3
>> 271     57      3.3
>> 272     58      3.3
>> 273     59      3.3
>> 274     60      3.3
>> 275     61      3.3
>> 276     62      3.3
>> 277     63      3.3
>> 278     64      3.3
>> 279     65      3.3
>> 280     66      3.3
>> 281     67      3.3
>> 282     68      3.3
>> 283     69      3.3
>> 284     70      3.3
>> 285     71      3.4
>> 286     72      3.4
>> 287     73      3.4
>> 288     74      3.4
>> 289     75      3.4
>> 290     76      3.4
>> 291     77      3.4
>> 292     78      3.4
>> 293     79      3.5
>> 294     80      3.5
>> 295     81      3.5
>> 296     82      3.5
>> 297     83      3.5
>> 298     84      3.5
>> 299     85      3.6
>> 300     86      3.6
>> 301     87      3.6
>> 302     88      3.6
>> 303     89      3.6
>> 304     90      3.7
>> 305     91      3.7
>> 306     92      3.7
>> 307     93      3.8
>> 308     94      3.8
>> 309     95      3.8
>> 310     96      3.8
>> 311     97      3.9
>> 312     98      3.9
>> 313     99      4
>> 314     100     4
>> 315     101     4
>> 316     102     4.1
>> 317     103     4.1
>> 318     104     4.2
>> 319     105     4.2
>> 320     106     4.3
>> 321     107     4.3
>> 322     108     4.4
>> 323     109     4.4
>> 324     110     4.5
>> 325     111     4.5
>> 326     112     4.6
>> 327     113     4.7
>> 328     114     4.7
>> 329     115     4.8
>> 330     116     4.9
>> 331     117     5
>> 332     118     5
>> 333     119     5.1
>> 334     120     5.2
>> 335     121     5.3
>> 336     122     5.4
>> 337     123     5.5
>> 338     124     5.5
>> 339     125     5.6
>> 340     126     5.7
>> 341     127     5.8
>> 342     128     6
>> 343     129     6.1
>> 344     130     6.2
>> 345     131     6.3
>> 346     132     6.4
>> 347     133     6.5
>> 348     134     6.7
>> 349     135     6.8
>> 350     136     6.9
>> 351     137     7
>> 352     138     7.2
>> 353     139     7.3
>> 354     140     7.5
>> 355     141     7.6
>> 356     142     7.8
>> 357     143     7.9
>> 358     144     8.1
>> 359     145     8.2
>> 360     146     8.4
>> 361     147     8.6
>> 362     148     8.7
>> 363     149     8.9
>> 364     150     9.1
>> 365     151     9.3
>> 366     152     9.3
>>
>>
>>
>> ------------------------------------------------------------------------
>>
>> 1    153    9.4
>> 2    154    9.6
>> 3    155    9.8
>> 4    156    10
>> 5    157    10.2
>> 6    158    10.4
>> 7    159    10.6
>> 8    160    10.8
>> 9    161    11
>> 10    162    11.2
>> 11    163    11.4
>> 12    164    11.6
>> 13    165    11.8
>> 14    166    12
>> 15    167    12.3
>> 16    168    12.5
>> 17    169    12.7
>> 18    170    12.9
>> 19    171    13.1
>> 20    172    13.4
>> 21    173    13.6
>> 22    174    13.8
>> 23    175    14
>> 24    176    14.2
>> 25    177    14.5
>> 26    178    14.7
>> 27    179    14.9
>> 28    180    15.1
>> 29    181    15.4
>> 30    182    15.6
>> 31    183    15.8
>> 32    184    16
>> 33    185    16.2
>> 34    186    16.5
>> 35    187    16.7
>> 36    188    16.9
>> 37    189    17.1
>> 38    190    17.3
>> 39    191    17.5
>> 40    192    17.7
>> 41    193    17.9
>> 42    194    18.1
>> 43    195    18.3
>> 44    196    18.5
>> 45    197    18.7
>> 46    198    18.9
>> 47    199    19
>> 48    200    19.2
>> 49    201    19.4
>> 50    202    19.5
>> 51    203    19.7
>> 52    204    19.9
>> 53    205    20
>> 54    206    20.2
>> 55    207    20.3
>> 56    208    20.4
>> 57    209    20.5
>> 58    210    20.7
>> 59    211    20.8
>> 60    212    20.9
>> 61    213    21
>> 62    214    21.1
>> 63    215    21.2
>> 64    216    21.3
>> 65    217    21.3
>> 66    218    21.4
>> 67    219    21.5
>> 68    220    21.5
>> 69    221    21.6
>> 70    222    21.6
>> 71    223    21.6
>> 72    224    21.7
>> 73    225    21.7
>> 74    226    21.7
>> 75    227    21.7
>> 76    228    21.7
>> 77    229    21.7
>> 78    230    21.7
>> 79    231    21.6
>> 80    232    21.6
>> 81    233    21.6
>> 82    234    21.5
>> 83    235    21.5
>> 84    236    21.4
>> 85    237    21.3
>> 86    238    21.3
>> 87    239    21.2
>> 88    240    21.1
>> 89    241    21
>> 90    242    20.9
>> 91    243    20.8
>> 92    244    20.7
>> 93    245    20.5
>> 94    246    20.4
>> 95    247    20.3
>> 96    248    20.2
>> 97    249    20
>> 98    250    19.9
>> 99    251    19.7
>> 100    252    19.5
>> 101    253    19.4
>> 102    254    19.2
>> 103    255    19
>> 104    256    18.9
>> 105    257    18.7
>> 106    258    18.5
>> 107    259    18.3
>> 108    260    18.1
>> 109    261    17.9
>> 110    262    17.7
>> 111    263    17.5
>> 112    264    17.3
>> 113    265    17.1
>> 114    266    16.9
>> 115    267    16.7
>> 116    268    16.5
>> 117    269    16.2
>> 118    270    16
>> 119    271    15.8
>> 120    272    15.6
>> 121    273    15.4
>> 122    274    15.1
>> 123    275    14.9
>> 124    276    14.7
>> 125    277    14.5
>> 126    278    14.2
>> 127    279    14
>> 128    280    13.8
>> 129    281    13.6
>> 130    282    13.4
>> 131    283    13.1
>> 132    284    12.9
>> 133    285    12.7
>> 134    286    12.5
>> 135    287    12.3
>> 136    288    12
>> 137    289    11.8
>> 138    290    11.6
>> 139    291    11.4
>> 140    292    11.2
>> 141    293    11
>> 142    294    10.8
>> 143    295    10.6
>> 144    296    10.4
>> 145    297    10.2
>> 146    298    10
>> 147    299    9.8
>> 148    300    9.6
>> 149    301    9.4
>> 150    302    9.3
>> 151    303    9.1
>> 152    304    8.9
>> 153    305    8.7
>> 154    306    8.6
>> 155    307    8.4
>> 156    308    8.2
>> 157    309    8.1
>> 158    310    7.9
>> 159    311    7.8
>> 160    312    7.6
>> 161    313    7.5
>> 162    314    7.3
>> 163    315    7.2
>> 164    316    7
>> 165    317    6.9
>> 166    318    6.8
>> 167    319    6.7
>> 168    320    6.5
>> 169    321    6.4
>> 170    322    6.3
>> 171    323    6.2
>> 172    324    6.1
>> 173    325    6
>> 174    326    5.8
>> 175    327    5.7
>> 176    328    5.6
>> 177    329    5.5
>> 178    330    5.5
>> 179    331    5.4
>> 180    332    5.3
>> 181    333    5.2
>> 182    334    5.1
>> 183    335    5
>> 184    336    5
>> 185    337    4.9
>> 186    338    4.8
>> 187    339    4.7
>> 188    340    4.7
>> 189    341    4.6
>> 190    342    4.5
>> 191    343    4.5
>> 192    344    4.4
>> 193    345    4.4
>> 194    346    4.3
>> 195    347    4.3
>> 196    348    4.2
>> 197    349    4.2
>> 198    350    4.1
>> 199    351    4.1
>> 200    352    4
>> 201    353    4
>> 202    354    4
>> 203    355    3.9
>> 204    356    3.9
>> 205    357    3.8
>> 206    358    3.8
>> 207    359    3.8
>> 208    360    3.8
>> 209    361    3.7
>> 210    362    3.7
>> 211    363    3.7
>> 212    364    3.6
>> 213    365    3.6
>> 214    366    3.6
>> 215    1    3.2
>> 216    2    3.2
>> 217    3    3.2
>> 218    4    3.2
>> 219    5    3.2
>> 220    6    3.2
>> 221    7    3.2
>> 222    8    3.2
>> 223    9    3.2
>> 224    10    3.2
>> 225    11    3.2
>> 226    12    3.2
>> 227    13    3.2
>> 228    14    3.2
>> 229    15    3.2
>> 230    16    3.2
>> 231    17    3.2
>> 232    18    3.2
>> 233    19    3.2
>> 234    20    3.2
>> 235    21    3.2
>> 236    22    3.2
>> 237    23    3.2
>> 238    24    3.2
>> 239    25    3.2
>> 240    26    3.2
>> 241    27    3.2
>> 242    28    3.2
>> 243    29    3.2
>> 244    30    3.2
>> 245    31    3.2
>> 246    32    3.2
>> 247    33    3.2
>> 248    34    3.2
>> 249    35    3.2
>> 250    36    3.2
>> 251    37    3.2
>> 252    38    3.2
>> 253    39    3.2
>> 254    40    3.2
>> 255    41    3.2
>> 256    42    3.2
>> 257    43    3.2
>> 258    44    3.2
>> 259    45    3.2
>> 260    46    3.2
>> 261    47    3.2
>> 262    48    3.2
>> 263    49    3.2
>> 264    50    3.2
>> 265    51    3.2
>> 266    52    3.2
>> 267    53    3.2
>> 268    54    3.3
>> 269    55    3.3
>> 270    56    3.3
>> 271    57    3.3
>> 272    58    3.3
>> 273    59    3.3
>> 274    60    3.3
>> 275    61    3.3
>> 276    62    3.3
>> 277    63    3.3
>> 278    64    3.3
>> 279    65    3.3
>> 280    66    3.3
>> 281    67    3.3
>> 282    68    3.3
>> 283    69    3.3
>> 284    70    3.3
>> 285    71    3.4
>> 286    72    3.4
>> 287    73    3.4
>> 288    74    3.4
>> 289    75    3.4
>> 290    76    3.4
>> 291    77    3.4
>> 292    78    3.4
>> 293    79    3.5
>> 294    80    3.5
>> 295    81    3.5
>> 296    82    3.5
>> 297    83    3.5
>> 298    84    3.5
>> 299    85    3.6
>> 300    86    3.6
>> 301    87    3.6
>> 302    88    3.6
>> 303    89    3.6
>> 304    90    3.7
>> 305    91    3.7
>> 306    92    3.7
>> 307    93    3.8
>> 308    94    3.8
>> 309    95    3.8
>> 310    96    3.8
>> 311    97    3.9
>> 312    98    3.9
>> 313    99    4
>> 314    100    4
>> 315    101    4
>> 316    102    4.1
>> 317    103    4.1
>> 318    104    4.2
>> 319    105    4.2
>> 320    106    4.3
>> 321    107    4.3
>> 322    108    4.4
>> 323    109    4.4
>> 324    110    4.5
>> 325    111    4.5
>> 326    112    4.6
>> 327    113    4.7
>> 328    114    4.7
>> 329    115    4.8
>> 330    116    4.9
>> 331    117    5
>> 332    118    5
>> 333    119    5.1
>> 334    120    5.2
>> 335    121    5.3
>> 336    122    5.4
>> 337    123    5.5
>> 338    124    5.5
>> 339    125    5.6
>> 340    126    5.7
>> 341    127    5.8
>> 342    128    6
>> 343    129    6.1
>> 344    130    6.2
>> 345    131    6.3
>> 346    132    6.4
>> 347    133    6.5
>> 348    134    6.7
>> 349    135    6.8
>> 350    136    6.9
>> 351    137    7
>> 352    138    7.2
>> 353    139    7.3
>> 354    140    7.5
>> 355    141    7.6
>> 356    142    7.8
>> 357    143    7.9
>> 358    144    8.1
>> 359    145    8.2
>> 360    146    8.4
>> 361    147    8.6
>> 362    148    8.7
>> 363    149    8.9
>> 364    150    9.1
>> 365    151    9.3
>> 366    152    9.3
> 
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help




More information about the R-help mailing list