[R] Why two chisq.test p values differ when the contingency
(Ted Harding)
Ted.Harding at nessie.mcc.ac.uk
Wed Jul 16 02:30:59 CEST 2003
On 15-Jul-03 Shi, Tao wrote:
> Hi, Ted and Dennis:
>
> Thanks for your speedy replies! I don't think this happens just
> randomly, rather, I'm thinking it may be due to the way chisq.test
> function handles simulation. Here shows why: (Ted, I think there is an
> error in your code, "tx" should be t(x) )
Not so -- I had already transposed them:
> x
[,1] [,2]
[1,] 149 151
[2,] 1 8
> tx
[,1] [,2]
[1,] 149 1
[2,] 151 8
Anyway, just to check, a third run (which as it happens follows straight
on from the ones previously reported since I had not used that instance
of R since) amd putting the new results alongside the previous ones:
> c2trx<-chisq.test(t(x), simulate.p.value=T, B=100000)$p.value
> for(i in (1:9)){c2trx<-c(c2trx,chisq.test(t(x), simulate.p.value=T,
B=100000)$p.value)}
> cbind(c2x,c2tx,c2trx)
c2x c2tx c2trx
[1,] 0.01627 0.01720 0.01628
[2,] 0.01672 0.01690 0.01686
[3,] 0.01662 0.01669 0.01706
[4,] 0.01733 0.01656 0.01705
[5,] 0.01679 0.01777 0.01633
[6,] 0.01715 0.01769 0.01782
[7,] 0.01765 0.01769 0.01688
[8,] 0.01703 0.01740 0.01683
[9,] 0.01704 0.01708 0.01689
[10,] 0.01669 0.01655 0.01721
Maybe Peter Dalgaard's suspicion is true, that one case is not being
counted. But this must be R-implementation/version-dependent. In my
case:
> version
_
platform i686-pc-linux-gnu
arch i686
os linux-gnu
system i686, linux-gnu
status
major 1
minor 6.1
year 2002
month 11
day 01
language R
Ted.
>
>> x
> [,1] [,2]
> [1,] 149 151
> [2,] 1 8
>> c2x<-chisq.test(x, simulate.p.value=T, B=100000)$p.value
>> for(i in (1:20)){c2x<-c(c2x,chisq.test(x, simulate.p.value=T,
> + B=100000)$p.value)}
>> c2tx<-chisq.test(t(x), simulate.p.value=T, B=100000)$p.value
>> for(i in (1:20)){c2tx<-c(c2tx,chisq.test(t(x), simulate.p.value=T,
> + B=100000)$p.value)}
>> cbind(c2x,c2tx)
> c2x c2tx
> [1,] 0.03727 0.01629
> [2,] 0.03682 0.01662
> [3,] 0.03671 0.01665
> [4,] 0.03788 0.01745
> [5,] 0.03706 0.01646
> [6,] 0.03715 0.01728
> [7,] 0.03664 0.01683
> [8,] 0.03681 0.01720
> [9,] 0.03742 0.01758
> [10,] 0.03712 0.01685
> [11,] 0.03739 0.01615
> [12,] 0.03811 0.01653
> [13,] 0.03711 0.01673
> [14,] 0.03639 0.01678
> [15,] 0.03714 0.01719
> [16,] 0.03774 0.01780
> [17,] 0.03574 0.01707
> [18,] 0.03661 0.01705
> [19,] 0.03751 0.01711
> [20,] 0.03683 0.01718
> [21,] 0.03678 0.01653
>
>
>
> ...Tao
>
> ============================================================
> Ted.Harding at nessie.mcc.ac.uk wrote:
> On 15-Jul-03 Tao Shi wrote:
>>>x
>> [,1] [,2]
>> [1,] 149 151
>> [2,] 1 8
>>>t(x)
>> [,1] [,2]
>> [1,] 149 1
>> [2,] 151 8
>>>chisq.test(x, simulate.p.value=T, B=100000)
>> Pearson's Chi-squared test with simulated p-value (based on
>> 1e+05 replicates)
>> data: x
>> X-squared = 5.2001, df = NA, p-value = 0.03774
>>
>>>chisq.test(t(x), simulate.p.value=T, B=100000)
>> Pearson's Chi-squared test with simulated p-value (based on
>> 1e+05 replicates)
>> data: t(x)
>> X-squared = 5.2001, df = NA, p-value = 0.01642
>
> Possibly you may just have been unlucky, though the 0.03774 seems
> large:
>
> c2x<-chisq.test(x, simulate.p.value=T, B=100000)$p.value
> for(i in (1:9)){c2x<-c(c2x,chisq.test(x, simulate.p.value=T,
> B=100000)$p.value)}
> c2tx<-chisq.test(tx, simulate.p.value=T, B=100000)$p.value
> for(i in (1:9)){c2tx<-c(c2tx,chisq.test(tx, simulate.p.value=T,
> B=100000)$p.value)}
> cbind(c2x,c2tx)
> c2x c2tx
> [1,] 0.01627 0.01720
> [2,] 0.01672 0.01690
> [3,] 0.01662 0.01669
> [4,] 0.01733 0.01656
> [5,] 0.01679 0.01777
> [6,] 0.01715 0.01769
> [7,] 0.01765 0.01769
> [8,] 0.01703 0.01740
> [9,] 0.01704 0.01708
> [10,] 0.01669 0.01655
>
> sd(c2x)
> [1] 0.0003946715
> sd(c2tx)
> [1] 0.0004737099
>
> Ted.
>
>
> --------------------------------------------------------------------
> E-Mail: (Ted Harding)
> Fax-to-email: +44 (0)870 167 1972
> Date: 15-Jul-03 Time: 21:00:04
> ------------------------------ XFMail ------------------------------
>
>
>
>
>
> ---------------------------------
> Do you Yahoo!?
--------------------------------------------------------------------
E-Mail: (Ted Harding) <Ted.Harding at nessie.mcc.ac.uk>
Fax-to-email: +44 (0)870 167 1972
Date: 16-Jul-03 Time: 01:30:59
------------------------------ XFMail ------------------------------
More information about the R-help
mailing list