[R] nls confidence intervals
Spencer Graves
spencer.graves at pdf.com
Thu Aug 14 18:08:26 CEST 2003
This seems to identify a possible bug in R 1.7.1 under Windows 2000:
> tstDf <- data.frame(y = 1:11, x=1:11)
> fit <- nls(y~a/x, data=tstDf, start=list(a=1))
> predict(fit, se.fit=TRUE)
[1] 7.0601879 3.5300939 2.3533960 1.7650470 1.4120376 1.1766980 1.0085983
[8] 0.8825235 0.7844653 0.7060188 0.6418353
The same code in S-Plus 6.1 produces the following:
> predict(fit, se.fit = TRUE)
$fit:
[1] 7.0601876 3.5300938 2.3533959 1.7650469 1.4120375 1.1766979
1.0085982 0.8825234
[9] 0.7844653 0.7060188 0.6418352
$se.fit:
[1] 5.2433042 2.6216521 1.7477681 1.3108261 1.0486608 0.8738840
0.7490435 0.6554130
[9] 0.5825894 0.5243304 0.4766640
$residual.scale:
[1] 6.544753
$df:
[1] 10
Unfortunately, I'm not in a position to fix the problem, but this toy
example might make it easier for someone else to fix it.
spencer graves
p.s. The following command in S-Plus 6.1 seems to work fine but
produces an error in R 1.7.1:
nls(y~a, data=tstDf, start=list(a=1))
Error in nlsModel(formula, mf, start) : singular gradient matrix at
initial parameter estimates
#############################################################
Enrique Portilla wrote:
> Hi,
> Does anyone know how to compute the confidence prediction intervals for
> a nonlinear least squares models (nls)?
>
> I was trying to use the function 'predict' as I usually do for other
> models fitting (glm, lm, gams...), but it seems that se.fit, and
> interval computation is not implemented for the nls...
>
> Cheers
>
> Enrique
>
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~
> Fisheries Research Services,
> Marine Laboratory,
> Victoria Road,
> Torry,
> Aberdeen, UK.
> Tel. 44 (0) 1224 295314
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help
More information about the R-help
mailing list