[R] [OFF] Nested or not nested, this is the question.
Peter Dalgaard BSA
p.dalgaard at biostat.ku.dk
Wed Apr 9 22:03:20 CEST 2003
"Ronaldo Reis Jr." <chrysopa at insecta.ufv.br> writes:
> I have 12 plots in 4 sizes in 3 replicates (4*3 = 12)
> In each plot I put 2 species (A and B) to reproduce.
> After a period I make samples in each board and count the number of
> individuals total (tot) and individuals A and B (nsp). Others individuals
> excepts A and B are in total of individuals.
>
> This make a dataset with the 24 lines and not 12. Its smell pseudoreplication
> in a nested design, OK?
>
> I need to know:
>
> the species are different in proportion?
>
> the size affect the species's proportion?
>
> existe interaction between size and species?
>
> I make the analysis.
>
> > m.lme <- lme(nsp/tot~size*specie,random=~1|size/specie)
> > anova(m.lme)
> numDF denDF F-value p-value
> (Intercept) 1 16 374.7121 <.0001
> size 1 2 37.8683 0.0254
> specie 1 2 18.2036 0.0508
> size:specie 1 2 9.3203 0.0926
> >
>
> This is the correct mean to make this analysis?
>
> or
>
> > m.lme <- lme(nsp/tot~size*specie,random=~1|plot/specie)
> > anova(m.lme)
> numDF denDF F-value p-value
> (Intercept) 1 10 579.8853 <.0001
> size 1 10 58.6030 <.0001
> specie 1 10 59.5235 <.0001
> size:specie 1 10 30.4760 3e-04
> >
>
> or neither?
Neither. First of all, you have numDF = 1 for things that have more
than two levels, so you forgot to make them factors.
reis$plot<-factor(reis$plot)
reis$size<-factor(reis$size)
reis$specie<-factor(reis$specie)
Then you seem to be needing something that describes the replication,
and you're not actually telling us, but if I guess that plots 1-4 is
the 1st replication and 5-8 and 9-12 are the others, then this should
work:
reis$repl <- factor((as.numeric(reis$plot)-1)%/%4+1)
table(reis$plot,reis$repl) # just to check
now you can do
anova(lme(nsp/tot~size*specie,random=~1|repl/plot,data=reis))
and have
numDF denDF F-value p-value
(Intercept) 1 8 207.18935 <.0001
size 3 6 94.58027 <.0001
specie 1 8 57.14293 1e-04
size:specie 3 8 10.28573 4e-03
or, as I'd prefer in a balanced study:
summary(aov(nsp/tot~specie*size+Error(repl+plot),data=reis))
Error: repl
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 2 0.027708 0.013854
Error: plot
Df Sum Sq Mean Sq F value Pr(>F)
size 3 0.305417 0.101806 94.58 1.927e-05 ***
Residuals 6 0.006458 0.001076
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
specie 1 0.041667 0.041667 57.143 6.551e-05 ***
specie:size 3 0.022500 0.007500 10.286 0.00404 **
Residuals 8 0.005833 0.000729
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
(Error(repl/plot) actually works too because repl:plot is the same as plot)
This gets a little confusin because "repl" is a coarsening of "plot".
It may be easier with a within-repl numbering, which you can get by
noting that plot is equivalent to repl:size
anova(lme(nsp/tot~size*specie,random=~1|repl/size,data=reis))
summary(aov(nsp/tot~specie*size+Error(repl/size),data=reis))
--
O__ ---- Peter Dalgaard Blegdamsvej 3
c/ /'_ --- Dept. of Biostatistics 2200 Cph. N
(*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk) FAX: (+45) 35327907
More information about the R-help
mailing list