<html><body><div style="color:#000; background-color:#fff; font-family:arial, helvetica, sans-serif;font-size:10pt"><div><br><span></span></div><div>Buenos días gente, a ver si alguien me puede ayudar.</div><div>Tengo esta tabla sencillita, con  rango de tallas, aņo e individuos. <br><span></span></div><div><br><span></span></div><div><br><span></span></div><div><span>head (kk)<br>  rango      aņo        NšEjemplares<br>1  [24,39] 2007         1617<br>2  [24,39] 2008         1348<br>3  [24,39] 2009         1510<br>4  [24,39] 2010         1904<br>5  (39,46] 2007          851<br>6  (39,46] 2008        
 1026</span></div><br><br>De aqui saco:<br><br> <div style="font-family: arial, helvetica, sans-serif; font-size: 10pt;">pct<-ddply(kk, .( variable), summarize, pct=round((100*NšEjemplares/sum (NšEjemplares)),2))<br>head (pct)<br><br><br>variable   pct<br>1  [24,39] 25.35<br>2  [24,39] 21.13<br>3  [24,39] 23.67<br>4  [24,39] 29.85<br>5  (39,46] 20.44<br>6  (39,46] 24.64<br><br><br>Obtuve el porcentaje de rango de tallas para cada uno de los aņos.<br><br><br>Hago un barplot: <br><br><br>barplot((pct$pct), scale="percent", breaks="Sturges", border=T,<br>col=colores,ylab="Porcentaje muestreados", xlab="rango de tallas",sub="Talla(cm)",<br>beside = T, legend.text=leyenda,args.legend=list(x="topright"))<br><br>y me queda la grafica que adjunto en el grafico.<br><br>La grafica no me acaba de quedar todo lo bien que yo querria.  Pego debajo la grafica en Excel  (la de R va en archivo adjunto) para que
 veais todo lo que me queda por hacer (creo que es mejor asi que explicar lo que tengo que hacer que igual me lio).<br>A ver si alguien me puede ayudar, gracias<br>Jose Luis<br><br><br><br><br><br><br><br><br><br><br><br><img
 src="
kchYOmX5wy0wnp2DI9I6+NcbUORyZnLF/xn7+S6fmk+ef9zndcznTnu/v7z+df/75p/b/5neZf8TakWYfsXaYkiPWjlJ0xJqUd9gzO/ev2FQ+CndeP3983XTe+50/f/7MnF+SVOqY5OT3Ky/eef0qzOujXpMjSUc7IjnJPb/Dc5y88vCqz/yPAcJbmu4WM/cQmxxJ2g5olzGByZGk7ZicwORI0nZMTmByJGk7JicwOZK0HZMTmBxJ2o7JCUyOJG3H5AQmR5K2Y3ICkyNJ2zE5gcmRpO2YnMDkSNJ2TE5gciRpOyYnMDmStB2TE5gcSdqOyQlMjiRtx+QEJkeStmNyApMjSdsxOYHJkaTtmJzA5EjSdkxOYHIkaTsmJzA5krQdkxOYHEnajskJTI4kbcfkBCZHkrZjcgKTI0nbMTmByZGk7ZicwORI0nZMTmByJGk7JicwOZK0HZMTmBxJ2o7JCUyOJG3H5AQmR5K2Y3ICkyNJ2zE5gcmRivzPf//X2J+jRxORyQlMjlTE5KiIyQlMjlTE5KiIyQlMjlTE5KiIyQlMDp8bOBSToyImJzA5fG7gUEyOipicwOTwuYFDMTkqYnICk8PnBg4ll5z/vaT/6Bdz9Qcmh8/koJgcFXH1ByaHz+SgmBwVcfUHJofP5KCYHBVx9Qcmh8/koJgcFTlm9bf36+XH9d72lza3S+LS7LWJC7uLbs3rP5ZaXpLJ4TM5KCZHRQ5Z/c3t2YD2fr1k/9pJXpu6sOtLe7/+NKe5veIzzeTwmRwUk6MiB6/+5jbIxysN/cVPyWvHLhwmpyw4JucMTA6KyVGRY1f/Ky1x71ciOZ/XjtzluWPtem9n7lH7/v7+0/n6+lr4v6StmRwUk6MiR67+YVjWS87gPrem/9Ro5qc5vsvhMzkoJkdFDlv9cbfY516ysD8seW32Ls8fXzed1xyTw2dyUEyOihyz+pvb5f0zlp
UOH+hu/fyhC1F/wMIEk8NncnqEh8LkqMgRq/91iHTY5zW4uM/Rq02pa0cvDPV5uzrL5PARtrMQhIfC5KiIqz8wOXyE7SwE4aEwOSri6g9MDh9hOwtBeChMjoq4+gOTw0fYzkIQHgqToyKu/sDk8BG2sxCEh8LkqIirPzA5fITtLAThoTA5KuLqD0wOH2E7C0F4KEyOirj6A5PDR9jOQhAeCpOjIiuu/v7kzc/fhZn9jQEgJoePsJ2FIDwUJkdFVlz93W/4x3PNnIvJ4SNsZyEI23qToyKrJ6f/3f/+Tc+ZmBw+k9MjbOtNjoqsufqfO9T6vWsn3LNmcvhMTo+wrTc5KuLqD0wOn8npEbb1JkdFXP2ByeEzOT3Ctt7kqMiqqz+cIvp8H+Q8TM4ZmJweYVtvclRk3YOk41em+VmORvzr3/+X/DPnvianR9jWmxwV2eAg6SePWNMok7MKwrbe5KiI73ICk7MPk7MKwrbe5KjIuqu/uflZjmYwOasgbOtNjoq4+gOTsw+TswrCtr4mOZeRP/oFXM2BydmHyVmFydHpLF/N4cjo6Hz71kzOPkzOKkyOTmfN1Tw8kec5z3djcnZiclZhcnQ6HiQdmJx9mJxVmBydzqrJuXiQ9G9VuI0zOaswOTqd7Q6SPmFwTE41k3MEk6PTcTUHJqeSyTmCydHpbPB9OR6x9guZnCOYHJ3Oup/l3Jr+sIFTHj1gcmqZnCOYHJ3O+kesda05ZXNMTiWTcwSTo9NZ/11Ol57hb+mchsmpZHKOYHLqEWb4lbb4VdDnZzpnPGTN5FQyOUcwOfUIM/xKPsSByalkco5gcuqNzLDkmak5TE5gciqZnCOYnHom5yDrr+a2adrVF7oXk1PJ5BzB5NQzOQdZ+VtBX+cdOOd5PU1OJZNzBJNTz+QcZP2DpLuze3qQ9G9ico5gcuqZnIOs+y7nem8Hv57ju5zfw+T0AJt7w
gwmR0me1jMwOZVMTg+wuSfMYHKU5BFrgcmpZHJ6gM09YQaToySTE5icSianB9jcE2YwOUra4IQ3Z2ZyKpmcHmBzT5jB5ChpixPenJjJqWRyeoDNPWEGk6Oklb+I2u/L+aVMTg+wuSfMYHKUdNhnOc3t7ai28AVviVi9ija4V+LC7qJ+ESWHa5ucSianB9jcE2YwOUpa/1dBXz+OvstpbpfLrWlu78kZL0N7v3Y3fv01dWG3lP4XUcv29pmcSianB9jcE2YwOUo6JDn9DeYmp71fBwt73nHswmFySj9eMjmVTE4PsLknzGBylLTOav78GGfGRzmfyRm9Z8zRW13elvac5XpvK06AYHIqmZweYHNPmMHkKGm7dzkzbj9yhoLBDrPXJbOTM7jPrelDlhnt+/v7T+fr66vg/4Bs51e1yekBNveEGUyOktY9x9rPu5OZ3wo6mpxkPuI+tFszcuHbj6+bzsvh3/Mux+QcBbC5J8xgcpS0wbucuLXP3X4kOT9HF4SLZh8+0N36+UM3xNx3YCanksnpATb3hBlMjpJWT06/uc98eUE4Hjp+BPO2F+xVn8F9XosduzDUp+RXhExOJZPTA2zuCTOYHCWtuZqfm/c+ESc8l7TJqVS4cTE5qzA59UzOQTytZ2ByKpmcHmBzT5jB5CjJ5AQmp5LJ6QE294QZTI6S1l/NbdO0qy90LyanksnpFW7uN3koTM4kk3OQdQ+SHnz672c5xzI5RzE5Jkfj1j9IujseOXPEGpfJqWRyeibH5Gjcuu9yrve2S47vco5lcqZstXExOSZH49ZdzelfrjkRk1PJ5PRMjsnROI9YC0xOJZPTMzkmR+NMTmByKpmcnskxORrnF1EHJqeSyemZHJOjcVut5nMePWByapmcnskxORq33Wr2IOlDmZwpJmcVJkdFNlvN8dtszsLkVDI5PZNjcjRuw89yzhcck1PN5PRMjsnR
OI9YC0xOJZPTMzkmR+NMTmByKpmcnskxORq3wVe0nXnXmsmpZHJ6JsfkaNy6n+WcrzFvTE6lX5acmu3sjmOYnGkm5yDrn0n61ExOJZNjckyOZlh5x9rZo2NyKpkck2NyNMOaq/njjDfn289mciqZHJNjcjSDO9YCk1PJ5Jgck6MZ1n2Xc/rmmJxKJsfkmBzN4JmkA5NTyeSYHJOjGfxV0MDkVDI5JsfkaAaTE5icSibH5JgczWByApNTyeSYHJOjGUxOYHIqmRyTY3I0w4qruf9Otue51s54+JrJqWRyTI7J0Qwb/F7O81xrpzzlmsmpZHJMjsnRDKsnpz/rjV9EfahfmBzAth4yhsmZZnIOssGXF/R71064Z83kVDI5pDFMzjSTcxAPHwhMTiWTQxrD5EwzOQcxOcFfn5ytXlEmhzSGyZlmcg6y/mpum6ZdfaF7MTmVTA5pDJMzzeQcZN2DpH9OrXa9t36WczSTY3JMTobJOcj6B0l3x0p7xNqhTI7JMTkZJucg677Lud7bLjm+yzmWyTliBpNjcpS37moefn/BCYNjcqoBNveEGUyOyVGeR6wFJqcSYHNPmMHkmBzlmZzA5FQCbO4JM5gck6O8db8V9HzHC7wxOXnkzT1hBpNjcpS35mr+C5pjcvLIm3vCDCbnqDVSjDDDr7Tuu5w3uQA1t49DDF4LSB16kLw2cWF3Uf8fLzl2zuTkETYu5BlMjslR3iGf5TS3y+XWNLdhPNr7tftx8NfstakLu770vxVU9tbL5OQRNi7kGUyOyVHeBmeSnvcu5/EIyWnv18HNY41Grh27cJic0n19JiePsHEhz2ByTI7y1j984Lmxnz75wHty4v6y9+R8Xjtyl+eOteu9nblH7fv7+0/n6+tr8vbnYHJMjsnJIMzwK61/wpuuNZPN2Sg5g/vcmv6d18xPc3yXk0fYuJBnMDkmR3kbHCTdn2tt0Y6
1cN/ktdm7xG/Dnn0EgcnJI2xcyDOYHJOjvC0Okn6+s5jayG9y+EB36+cPbxmcZHLyCBsX8gwmx+Qo75Aj1uJxBl0MBpf271d+jm0bu3b0wvjuafpIhp7JySNsXMgz0JMDeSj23NwTZtCAJ7wJTE4eYeNCnsHkmBzlLU/Ox6HRcw+SJjI5eYSNC3kGk2NylOe7nMDk5BE2LuQZTI7JUZ7JCUxOHmHjQp7B5Jgc5a2anLCP7Xx71R4mZwph40KeweTQxjA5NOv+Xk7uVzNPweTkEV7Y5BlMDm0Mk0Oz/tkHOtNnvAEyOXmEFzZ5BpNDG8Pk0Kx8Ws/h2QBO+CbH5EwgvLDJM5gc2hgmh2bT78s536c6JieP8MImz2ByaGOYHBqPWAtMTh7hhU2eweTQxjA5NCYnMDl5hBc2eQbIGIQZIGOYHJoDv6KNyOTkEV7Y5BkgYxBmgIxhcmg2+PKCMzM5eYQXNnkGyBiEGSBjmBya7Q6SPiWTk0d4YZNngIxBmAEyhsmhWXnH2tmjY3LyCC9s8gyQMQgzQMYwOTQrf0Wbn+VQmBy3sz4UJofHHWuByckjvLDJM0DGIMwAGcPk0Kz7Luf0zTE5eYQXNnkGyBiEGSBjmByaTc8+4I6145gct7M+FCaHx18FDUxOHuGFTZ4BMgZhBsgYJofG5AQmJ4/wwibPABmDMANkDJNDs35y2qZpV1/oXkxOHuGFTZ4BMgZhBsgYJodmxeT057u53tuz/pKOyckjvLDJM0DGIMwAGcPk0Kx/kHR33Jpf0XYok+N21ofC5PCs+y7nem+75Pgu51gmx+2sD4XJ4Vn3s5zhcdInDI7JmUJ4YZNngIxBmAEyhsmh8Yi1wOTkEV7Y5BkgYxBmgIxhcmhMTmBy8ggvbPIMkDEIM0DGMDk0KySnvV8vPx/ivJ994HznIDA5eYQXNnkGyBiEGSBjmByazd/lnOvANZOTR3
hhk2eAjEGYATKGyaFZIznprwM9V2ueTE4e4YVNngEyBmEGyBgmh2bd5AyPjDY5hzI5bmd9KEwOj8kJTE4e4YVNngEyBmEGyBgmh8bkBCYnj/DCJs8AGYMwA2QMk0OzUnLOf6zaD5OTR3hhk2eAjEGYATKGyaHx93ICk5NHeGGTZ4CMQZgBMobJoTE5gcnJI7ywyTNAxiDMABnD5NCYnMDk5BFe2OQZIGMQZoCMYXJoTE5gcvIIL2zyDJAxCDNAxjA5NCYnMDl5hBc2eQbIGIQZIGOYHBqTE5icPMILmzwDZAzCDJAxTA6NyQlMTh7hhU2eATIGYQbIGCaHxuQEJieP8MImzwAZgzADZAyTQ8NJTnu/Zn+J9PULp4PvG01c2F3UL6LkK7FNTh7hhU2eATIGYQbIGCaHBpWc8TJ038kT/pq6sFtKf7qd9Gmux5icPMILmzwDZAzCDJAxTA7NOZLT3q+DcDS3y/Xejl44TE5ZcEzOFMILmzwDZAzCDJAxTA4NKjmj+9Vijt7qEi7sd6xd7+3MPWrf399/Ol9fX6v8zxzP5Lid9aEwOTyc5LwMdpi9LpmdnMF9bk0fspmf5vguJ4/wwibPABmDMANkDJNDQ0xOMh9xH9qtGbnw7cfXTec1x+TkEV7Y5BkgYxBmgIxhcmiIyWluH7vWZh8+0N36+UMXouZmckyO21kfCpNzNExyhl+688rDqz6Dj3peORq7MNSn5Kt7TE4e4YVNngEyBmEGyBgmhwaTHAaTk0d4YZNngIxBmAEyhsmhMTkBNjmjr6gxJsftrA+FyeExOYHJqRzjl21c3M76UKiOyQlMTuUYv2zj4nbWh0J1TE5gcirH+GUbF7ezPhSqY3ICk1M5xi/buLid9aFQHZMTnC85+76iCGOQZ4CMQZgBMobJoTE5gcnhj0GeATIGYQbIGCdNDmSMLZicwOTwxyDPABmDMANkDJNDY
3ICk8MfgzwDZAzCDJAxTA6NyQlMDn8M8gyQMQgzQMYwOTQmJzA5/DHIM0DGIMwAGcPk0JicwOTwxyDPABmDMANkDHpyIGPsyOQEJoc/BnkGyBiEGSBjmBwakxOYHP4Y5BkgYxBmgIxhcmhMTrBOckaeRksWCXlFEcYgzwAZgzADZAyTQ2NyApPDH4M8A2QMwgyQMUwOjckJTA5/DPIMkDEIM0DGMDk0JicwOfwxyDNAxiDMABnD5NCYnMDk8McgzwAZgzADZAyTQ2NyApPDH4M8A2QMwgyQMUwOjckJTA5/DPIMkDEIM0DGMDk0JicwOfwxyDNAxiDMABnD5NCYnMDk8McgzwAZgzADZAyTQ2NyApPDH4M8A2QMwgyQMUwOjckJTA5/DPIMkDEIM0DGMDk0JicwOfwxyDNAxiDMABnD5NCYnMDk8McgzwAZgzADZAyTQ2NyApPDH4M8A2QMwgyQMUwOjckJTA5/DPIMkDEIM0DGMDk0JicwOfwxyDNAxiDMABnD5NCYnMDk8McgzwAZgzADZAyTQ2Nygk2T8xe8oghjkGeAjEGYATKGyaExOYHJ4Y9BngEyBmEGyBgmh8bkBCaHPwZ5BsgYhBkgY5gcGpMTmBz+GOQZIGMQZoCMYXJoTE5gcvhjkGeAjEGYATKGyaExOYHJ4Y9BngEyBmEGyBgmh8bkBGXJ+X2vKMIY5BkgYxBmgIxhcmhMTmBy+GOQZ4CMQZgBMobJoTE5gcnhj0GeATIGYQbIGJTkQMYAMDmByeGPQZ4BMgZhBsgYlG09ZAwAkxOYHP4Y5BkgYxBmgIxBmAFUPgCTE5gc/hjkGSBjEGaAjEGYweQMkZLT3C5P13s779rEhd1Ft+Z5m/Z+TS0vyeTwxyDPABmDMANkDMIMJmcIk5z2fu2yMfhr9trUhV1f2vv1pznN7RWfaSaHPwZ5BsgYhBkgYxBmMDlDlOS09+sg
Dc0tNid57diFw+SUBWckOYSnEWEGyBjkGSBjEGaAjEGYgZ6cfWcAJSfuL3tPzue1I3d57li73tuZe9S+v7//dL6+vv5Ikmb7559/5m/q/77kDO5zax7t/Tr66VDCn1VOeLMMYYYHYwzCDA/GGIQZHowxCDM8GGMQZngUjgFKTtxLFvaHJa/N3uX54+um85pDWIWEGR6MMQgzPBhjEGZ4MMYgzPBgjEGY4XHS5Kx1+EB36+cPXYiam8kpRBiDMMODMQZhhgdjDMIMD8YYhBkeZ03Oo98HNjzAubl1P6SuHb0w1Oft6qz//Oc/i/8/liLM8GCMQZjhwRiDMMODMQZhhgdjDMIMj8IxQMmRJP3dTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSdJOTE6ZwfkORk+h09zer33da/aXxa245M97jZy3oX6MyQWm58x/Kd+4uqWNP1Y/15Q9EHVLS95rzpOqaIzJBU7cq3CKuqWN3KD+mblggR+rrPaZuWBpyadNzTNz2QLfb7DkyZlkckoMziQaTyra+zlDz9tprfszvCXOHjdb3ZKT9/o87fbCMSYXmJozf1a9/Aw1Sxt9rNr79Xq/F36zUt3SxibPP6kKx5jzLB1c3w1f/SytW1ryXsuembULfF9l9c/M+qUlnzZVz8xFC0wNX/3kTDM5JeaugNHn+YJX1JIlxytXeO7UL7C/Z/5L+UrnKFpauPp5z9Iv81u6tNe9VnpVVy0w/UDVPkvrlja4fp2tWuECP1bZomdm3dKST5slz8y6BX7ewOQcr3+PXP5KXqE4lUuO177e5lfsvVi4wLBhzH3dUeEYJUsL177ONV75eqpb2sgDWP+SLltgv7ckdX3xuqhbWuJey56ZdQv8XGVLnpl1S0s+bZY8M+sWmL7BCk/OwOSUaW6Xy/XeNrd+FfRP9DlPrMV7Q6eXPD3P8KfXqbo
XjJFaYGqM9zkXJmdyaZMzDF5clcmZXNr0DKkn1aIx5j5Lu4vjf3LBs3RiadMzrPDMnF5gGGNklVU+M2cvbXKGRc/M2QucHmONJ+cbk1NiuC5y7zMTT9OV3pbWLfljP1hqM1k/xrwFvs35scOhbIy6pb3dK/4j+GNjWDjDzKW9r6+5T6q5Y5Qt8GNNLnqW1i2tv9cKz8yyBSZXWfUzs25pyXsteWbWLTB9g8VPzk8mp8D755Kzk1P/L7Z1lvz5j+D6T0frFpiYc8GHtHVLyz5WxRu4uqV93mv2k2ruGNMLHHxh4fD66ne8NUtL32vBM3PpAgerbNnhAwuWlnzaLEhv5QLj26AV3ncGJqdI/070MvI2M9xg8NF23b9Xli85da/H8J801TvMSxY4Mufg4pIx6pY28VgVvrDrlpa+1+STqnSMkmfp526v9P/RvCEKlpa612OlZ2bNAsMqq3xmLl0aLjmLnpwjTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSdJOTI4kaScmR5K0E5MjSdqJyZGO1Z/SaubZtNr7tfbEX4u/PENayORIG/k4H/zol5iVJGfZSf1X+p4tqZLJkTY2saUvS86ibNgcHc3kSBsbOxn8+5cwdn9J3Ga4rNfesY+z4je3y+3+vPB6b9vXX193sDk6ksmRNpZ+b9F/Y2XmXU78FuO32yT68fzW4EdXo75gn19HLB3C5Egbi9v54Sc8t+aRTM7HbToT+YjfdT/48rrur4kvMpf2ZHKkjQ3bEL8ZOZ2cxG0Sy0rtJJuTHN/l6EgmR9rYW3J+/t7er2PvchK3GS5r+M3bnzvWssnxsxwdzeRIGwtvLfqP/G+398LE1ITbpBeWPHyg6W/3mRzf5OhoJkc6FX8vR2dmcqRzqQ6HxdHxTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSd
JOTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSdJOTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSdJOTI4kaScmR5K0E5MjSdqJyZEk7cTkSJJ2YnIkSTsxOZKknZgcSdJOTI4kaScmR5K0k/8HKDQ8oNfaLnUAAAAASUVORK5CYII=" alt=""><br> </div>  </div></body></html>