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Abstract

To bring correlation between binomial random variables is an important statistical problem with a lot
of theoretical and practical applications. In this paper we provide a new formulation of bivariate binomial
distribution in the sense that marginally each of the two random variables has a binomial distribution and
they have some non-zero correlation in the joint distribution. A 2 × 2 contingency table is the immediate
application of the proposed model.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This short article is motivated to provide some kind of solution to what may be an elementary
statistical problem—to give a joint distribution of two marginally binomially distributed random
variables. Quite often, in practice, it may be reasonable to assume a correlation between two binomial
random variables. A 2× 2 contingency table can be an obvious motivation of the present paper and
that may be an immediate application too. Although the problem can be generalized to a multivariate
setup, in the present paper we focus our attention to the bivariate version only.
A large part of the literature on contingency tables have been concerned with measuring the de-

gree of association between two dichotomized quantitative characters. Pearson (1900) introduced the
tetrachoric correlation as an estimate of the correlation coe:cient in a bivariate normal model under-
lying the 2× 2 table. For 2× 2 tables resulting from such discrete characters with no margin <xed,
the exact model is the four-cell multinomial distribution (see Fisher, 1950). A bivariate binomial
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distribution was attempted mainly to explain a 2 × 2 contingency tables formed in terms of two
characters A and B. Writing the probabilities of the four cells AB, ABc, AcB and AcBc as p1, p2, p3
and p4 = 1 − p1 − p2 − p3, and <xing only the total sample size combining the four cells as n, a
bivariate binomial distribution was <rst introduced by Aitken and Gonin (1935) in connection with
a fourfold sampling scheme with replacement. The distribution and its properties have been studied
in detail by Hamdan in a series of papers. In fact, this model is referred as the bivariate binomial
distribution in Patil and Joshi (1968). The canonical representation of the probability function of
this model can be given as a series bilinear in Krawtchouk’s polynomials (see Szego, 1959). See
also Hamdan (1972) in this context. Note that when p3 = 0, the distribution reduces to the standard
trinomial distribution (see Mardia, 1970, p. 82). Hamdan (1975) has considered the relationship of
this distribution with the trinomial distribution. Also Marshall and Olkin (1985) related the genesis
of the distribution with the trinomial. In fact, the probability function of the model given by Aitken
and Gonin (1935) can be written as a sum of trinomial probability functions (see Hamdan and
Nasro, 1986). The model is then studied in diLerent directions by several authors. For example,
Hamdan and Martinson (1971) derived the maximum likelihood estimates, conditional distributions
are studied by Kocherlakota (1989) in the most general form of the bivariate binomial distribution,
and Hamdan and Jensen (1976) discussed some possible applications. Loukas and Kemp (1986) and
Oluyede (1994) also considered the same distribution of Aitken and Gonin. Ong (1992) suggested
some mixture models to derive the distribution of Aitken and Gonin (1935).
There are also some attempts of <nding bivariate binomial distributions in other directions. Hamdan

and Tsokos (1971) introduced a bivariate binomial distribution (which is, actually, a bivariate com-
pound Poisson distribution). A symmetric bivariate binomial distribution was proposed by Le (1984)
to analyze clustered samples in medical research. Papageorgiou and David (1994) examined mixtures
of bivariate binomial distributions which were derived from bivariate-compounded Poisson distribu-
tion. Ling and Tai (1990) discussed bivariate binomial distributions from extension of classes of
univariate discrete distributions of order k. Takeuchi and Takemura (1987) obtained the sum of
0–1 random variables in the multivariate setup. A bivariate generalization of the three parameter
quasi-binomial distribution of Consul (1974) has been obtained by Mishra (1996). Crowder and
Sweeting (1989) carried out Bayesian inference, and they de<ned the bivariate binomial distribution
in a diLerent sense. They de<ned a two-fold binomial model like Y1|m ∼ Bin(m;p) and Y2|Y1; m ∼
Bin(Y1; q). A diLerent kind of prior in the same setting were derived by Polson and Wasserman
(1990). For some discussions on bivariate binomial distributions see Kocherlakota and Kocherlakota
(1992) and Johnson et al. (1997).
None of the existing works deal with the following simple problem. Suppose that one index

population of size n1 exposed to A and one other index population of size n2 exposed to B, where
both n1 and n2 are known constants. Let Y1 and Y2 be two jointly distributed random outcome
variables such that marginally Yi, i = 1; 2, follows a binomial distribution with parameters (ni; pi),
where ni’s are <xed, and there is correlation between Y1 and Y2 due to some other common exposures
of the two populations.
No solution of the problem is available in the statistical literature, so far. One possible approach

is to consider a random component b (may be a vector) and to write pi as a function of b. Then,
conditionally on b, Yi’s are independent binomials. Correlation will be incorporated if we integrate
the joint distribution of Y1 and Y2 over b. But, unfortunately the unconditional marginals of Yi’s will
never remain binomials. Moreover, in that case, due to the common eLect b, the correlation always
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becomes positive. Again, too many parameters in that model makes the estimation problem more
complicated. Here we propose a model by assuming n2¿ n1. The other case can be similarly dealt
with. In this present paper we propose the following probability model:

Pr(Y1 = y1; Y2 = y2) =

(
n1

y1

)
py11 (1− p1)n1−y1 × f(y2|y1); (1.1)

where

f(y2|y1) = (1 + �)−n1
∑

( j1 ; j2 ; j3)∈S

(
y1

j1

)(
n1 − y1

j2

)(
n2 − n1

j3

)
{p2 + �(p2 − p1) + �}j1

×{1− p2 − �(p2 − p1)}y1−j1{p2 + �(p2 − p1)}j2

×{1− p2 − �(p2 − p1) + �}n1−y1−j2pj32 (1− p2)n2−n1−j3 ; (1.2)

with S={(j1; j2; j3) : j1+j2+j3=y2; j1=0; 1; : : : ; y1; j2=0; 1; : : : ; n1−y1; j3=0; 1; : : : ; n2−n1}. Although
the model is complicated in its expression, it can be derived from a simple conditioning mechanism.
From the discussions of Section 2, it will follow that for model (1.1) and (1.2), marginally Y1 and
Y2 are simple binomials, and they have a correlation coe:cient

�=

√
m
M

(
�

1 + �

)√
p1(1− p1)
p2(1− p2)

; (1.3)

where m = min(n1; n2) and M = max(n1; n2). Note that, if f(y2|y1) = ( n2y2 )p
y2
2 (1 − p2)n2−y2 , (1.1)

represents the product of two independent binomial probability functions, which is obtained for
� = 0 in (1.2). The simple case of common pi is also discussed as a special case. Again, it will
be quite easy to simulate samples from the bivariate distribution. The theoretical expression of the
joint probability generating function is also derived. In Section 3, we obtain the maximum likelihood
estimates of the parameters. Finally, in Section 4 we provide some concluding remarks.

2. The model

First we consider the simple case where both Y1 and Y2 follow binomial with parameters (n; p=
0:5). In this case we can de<ne Y2=Y1 with probability � and Y2=n−Y1 with probability (1−�), and
set � accordingly to get a desired level of correlation. But, given Y1, in this case Y2 can take at most
two distinct values, Y1 and n−Y1. As a generalization where Y1 ∼ Bin(n1; 0:5) and Y2 ∼ Bin(n2; 0:5)
with n1¡n2, we can set Y2 = Y1 + W with probability � and Y2 = n − Y1 + W with probability
1− �, where W ∼ Bin(n2 − n1; 0:5), independent of Y1. In this case also, given Y1, Y2 cannot take
all possible values 0; 1; : : : ; n2. Again, even with such restrictions, the approach will be intractable if
Y1 and Y2 have common success probabilities other than 0.5. The situation will be more di:cult if
p1 �= p2. In fact, we need one model which will allow all the (n1+1)(n2+1) possible combinations
of (Y1; Y2) with some desired correlation.
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We present the model in the following manner. We represent Yi =
∑ni

j=1 Yij, i = 1; 2, where for
a given i, Yij’s will be marginally independently and identically distributed (i.i.d.) Bernoulli (pi)
random variables. We, at <rst, generate Y1j’s, j = 1; : : : ; n1, as i.i.d. Bernoulli (p1). Then, for j =
1; : : : ; m, we generate Y2j in the following way. Here Y2j will depend only on Y1j such that

Pr(Y2j = 1|Y1j) = p2 + �(p2 − p1) + �Y1j
1 + �

; (2.1)

for some �. Clearly, taking expectation in (2.1), the unconditional probability distribution of Y2j,
j = 1; : : : ; m, will be Bernoulli (p2). If n2¿m, we generate Y2;m+1; : : : ; Y2n2 as i.i.d. Bernoulli (p2).
The parameter � can be interpreted as the mixing parameter. Clearly, the value of � must be such
that the right hand side of (2.1) belongs to [0,1] for both Y1j=0; 1. Thus, for p1¿p2, the possible
range of � is [ − ((1 − p2)=(1 + p1 − p2)); p2=(p1 − p2)]; and for p2¿p1, the possible range is
[− ((1− p2)=(1 + p1 − p2)); (1− p2)=(p2 − p1)]. In the very special case when p1 = p2 = p, we
have �∈ (−(1− p);∞).
From (2.1), we have for j = 1; : : : ; m,

E(Y1jY2j) =E{Y1jE(Y2j|Y1j)}=
(
p2 + �(p2 − p1) + �

1 + �

)
E(Y1j)

=
(
p2 + �(p2 − p1) + �

1 + �

)
p1;

as Y 21j = Y1j. Consequently, we have the covariance between Y1j and Y2j, j = 1; : : : ; m, as (�=(1 +
�))p1(1− p1) resulting the covariance between Y1 and Y2 being

m
(

�
1 + �

)
p1(1− p1):

Hence, the correlation coe:cient between Y1 and Y2 will be as given in (1.3). In the simple particular
case where n1 = n2 and p1 =p2 the correlation has an easy form, namely �=(1+ �). The correlation
can be increased towards +1 taking � large enough.
Fig. 1 provides the bivariate distribution with n1=n2=10, with diLerent (p1; p2) values and some

possible correlation values (including the case of independence). Fig. 2 provides the corresponding
contours. From the <gures we observe that the probability distribution with some non-zero correlation
changes dramatically from the independent case.
Note that, from the above formulation the simulation of bivariate samples is an easy task. The

joint probability distribution (1.1) and (1.2) can be derived from the formulation (2.1). In fact, we
derive the joint probability generating function P(t1; t2) of (Y1; Y2). Note that, from the independence
of the pairs (Y11; Y21); : : : ; (Y1m; Y2m), we have

P(t1; t2) =E(t
Y1
1 t

Y2
2 )

=

{
m∏
i=1

E(tY1i1 t
Y2i
2 )

}{
M∏

i=m+1

E(tY1i1 )

}�(n1−m){ M∏
i=m+1

E(tY2i2 )

}�(n2−m)
;
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Fig. 1. Bivariate distribution with n1=n2=10, with diLerent (p1; p2) values and some possible correlation values (including
the case of independence).

where �(x)=1 if x¿ 0, and �(x)=0 otherwise. Note that, E(tY1i1 )=p1t1 +(1−p1) for i¿m. Now,

E(tY1i1 t
Y2i
2 ) =E{tY1i1 E(t

Y2i
2 |Y1i)}

=E
[
tY1i1

{
t2

(
p2 + �(p2 − p1) + �Y1i

1 + �

)
+
(
1− p2 − �(p2 − p1) + �(1− Y1i)

1 + �

)}]

=
{
t1t2

(
p2 + �(p2 − p1) + �

1 + �

)
+ t1

(
1− p2 − �(p2 − p1)

1 + �

)}
p1

+
{
t2

(
p2 + �(p2 − p1)

1 + �

)
+
(
1− p2 − �(p2 − p1) + �

1 + �

)}
(1− p1):
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Fig. 2. Contours or the bivariate distribution with n1 =n2 =10, with diLerent (p1; p2) values and some possible correlation
values (including the case of independence).

Consequently, we have

P(t1; t2) =
[{
t1t2

(
p2 + �(p2 − p1) + �

1 + �

)
+ t1

(
1− p2 − �(p2 − p1)

1 + �

)}
p1

+
{
t2

(
p2 + �(p2 − p1)

1 + �

)
+
(
1− p2 − �(p2 − p1) + �

1 + �

)}
(1− p1)

]m

×{p1t1 + (1− p1)}(n1−n2)�(n1−m){p2t2 + (1− p2)}(n2−n1)�(n2−m): (2.2)
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Under independence of Y1 and Y2, we have �= 0, and consequently (2.2) reduces to

{p1t1 + (1− p1)}n1{p2t2 + (1− p2)}n2 :
The coe:cient of ty11 t

y2
2 in the expansion of (2.2) will provide Pr(Y1 = y1; Y2 = y2), which is given

by (1.1) and (1.2). For example, when n16 n2, we have

Pr(Y1 = 0; Y2 = 0) =
{(

1− p2 − �(p2 − p1) + �
1 + �

)
(1− p1)

}n1
(1− p2)n2−n1 ;

which reduces to (1 − p1)n1(1 − p2)n2 for � = 0. Marginal moments of Y1 and Y2 are those of the
corresponding binomial distributions. To get the joint moment generating function we replace t1 and
t2 in (2.2) by exp(t1) and exp(t2), respectively. Note that the conditional distribution of any Yi given
the other is not binomial. In fact,

Pr(Y2 = y2|Y1 = y1) = f(y2|y1);
where f(y2|y1) is given in (1.2).

3. Estimation of the parameters

If no covariate is considered we do not need any further modeling of the parameters. In that
case there are only 3 parameters in model (1.1) and (1.2), namely p1, p2 and �. Suppose there
are k(¿ 2) independent experiments with n1i ; n2i ; y1i ; y2i being the n1; n2; y1; y2 values in the ith
experiment. Then the log-likelihood can be written as

l=Constant +

(
k∑
i=1

y1i

)
logp1 +

(
k∑
i=1

(n1i − y1i)

)
log (1− p1)

−
(

k∑
i=1

mi

)
log (1 + �) +

k∑
i=1

logUi;

where Ui =
∑

Si Wi with

Wi =

(
y1i

j1

)(
n1i − y1i

j2

)(
n2i − y1i

j3

)

×{p2 + �(p2 − p1) + �}j1{1− p2 − �(p2 − p1)}y1i−j1

×{p2 + �(p2 − p1)}j2{1− p2 − �(p2 − p1) + �}n1i−y1i−j2

×pj32 (1− p2)n2i−n1i−j3 :

The estimates of the parameters then can be obtained by employing grid search method for p1 and
p2 over their possible ranges, and, for every possible (p1; p2), by solving @l=@�= 0, where

@l
@�

=−
∑

mi
1 + �

+
∑ 1

Ui

∑
Si

Wi
@ logWi

@�
:
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To illustrate the applicability of the procedure we carry out some computations. Using random
numbers in S-Plus we generate two independent 2 × 2 tables (i.e., k = 2) with n11 = 8, n21 = 11,
n12 = 10, n22 = 12 and p1 = 0:2, p2 = 0:3, � = 1. The generated y11 = 2, y12 = 1, y21 = 0 and
y22 = 1. The maximum likelihood estimates of p1, p2 and � in this case comes out to be 0.22,
0.28 and 0.9749, which are quite close to the actual values. Thus the method works well for this
particular observed values. We have also carried out an extensive simulation based computation. In
each simulation, taking some <xed values of (p1; p2; �), K 2× 2 tables with some (n1i; n2i) for the
ith table, i=1; : : : ; K , are generated. Then the (p1; p2; �)-values are estimated from each simulation,
and all the simulated estimates are then averaged. It is observed that simulation results provide good
estimates of p1 and p2, but the estimates of � are not quite good for small value of K . The estimate
of � has an upward bias. The bias reduces with the increase of K . However, if K , the number of
tables, is large, say 20 or more, the estimate of � is quite close to the actual value. Note that some
other estimating procedures can also be used. After getting the estimates of p1 and p2, and noting
that

cov
(
Y1√
m
;
Y2√
m

)
=
(

�
1 + �

)
p1(1− p1);

� can be estimated from the sample covariance of the K available (y1i; y2i) values. But, this approach
is also not very e:cient for estimating �. Note that, the proposed method is Qexible in the real life
situations where p1 and p2 are functions of covariates.

4. Concluding remarks

There is a basic structural diLerence of our model with the earlier works. For example, consider
the two groups namely smokers (S) and non-smokers (NS). Each group is divided into two parts,
occurrence of cancer (C) or no cancer (NC). Thus there are four cells corresponding to S/C, S/NC,
NS/C and NS/NC in the 2×2 table. Then the model by Aitken and Gonin (1935) and the following
works in that direction, assumes the total number of individuals under study to be <xed, but the
numbers under S and NS are allowed to be random. In contrast, our model considers <xed values
of the numbers under S and NS. And, quite often, the data may be collected in that fashion. Note
that the model of Crowder and Sweeting (1989) is of form (1.1) in some sense, where Y1 is
binomial (n1 + n2; p) and f(y2|y1) is also a binomial probability function.
From (1.3), we observe that, even when p1 = p2, the correlation coe:cient between Y1 and Y2

will never be 1 for large �, when n1 �= n2. This has intuitive justi<cation in the sense that, when
n1 �= n2, we can never express Y1 =!0 +!1Y2 with probability 1. The proposed methodology can be
extended to obtain bivariate multinomial distribution to explain 2 × k tables. The details are under
study.
The present paper is an attempt to provide a solution of the distributional problem. The present

authors believe that a lot more theoretical and practical issues are to be taken care of, which may
be a subject of future research. One can as well rede<ne Y1 and Y2, and generate any one stating
from the other. The expression of the correlation provides the insight of the stating Yi. But, one
can make the expression invariant by choosing � appropriately. Odds ratio is an important feature
in such studies, which has widely been used in several experimental and observational studies. The
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estimate of the odds ratio in the present situation will be same as the case of independence. But its
distribution will diLer from the usual one for the possible correlation.
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