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Computing and Graphing Highest Density Regions

Rob J. HynDMAN

Many statistical methods involve summarizing a probabil-
ity distribution by a region of the sample space covering a
specified probability. One method of selecting such a region
is to require it to contain points of relatively high density.
Highest density regions are particularly useful for display-
ing multimodal distributions and, in such cases, may consist
of several disjoint subsets—one for each local mode. In this
paper, I propose a simple method for computing a highest
density region from any given (possibly multivariate) den-
sity f(x) that is bounded and continuous in z. Several ex-
amples of the use of highest density regions in statistical
graphics are also given. A new form of boxplot is proposed
based on highest density regions; versions in one and two
dimensions are given. Highest density regions in higher di-
mensions are also discussed and plotted.

KEY WORDS: Boxplots; Density estimation; Graphical
summary; Highest density regions.

1. INTRODUCTION

Many statistical methods involve summarizing a proba-
bility distribution by a region of the sample space cover-
ing a specified probability. For example, reporting a predic-
tion interval for a future observation involves an implicit
summary of the underlying distribution. A boxplot is an
alternative summary where the various components mark
regions of the empirical distribution function correspond-
ing approximately to regions of the underlying probability
distribution.

In summarizing a probability distribution by a region, it
is not always clear which region should be used. Suppose
you wish to give a two-sided 95% prediction interval from
a given distribution. Should you use the interval symmetric
about the mean, the interval symmetric about the median,
the interval defined between the 2.5% and 97.5% quantiles,
the interval of shortest length, or the interval that minimizes
the probability of covering a given set? Each of these in-
tervals has 95% coverage, and they may all be different. In
higher dimensions the difficulty of selecting an appropriate
region is even greater.

This article investigates one approach to this problem by
suggesting that highest density regions are often the most
appropriate subset to use to summarize a probability dis-
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tribution. As a motivating example Figure 1 shows five
possible 75% regions for a mixture density comprising an
N(0,1) density and an N(4,1) density with weights .7 and
.3, respectively. Only the highest density region shows the
bimodality.

The usual purpose in summarizing a probability distri-
bution by a region of the sample space is to delineate a
comparatively small set which contains most of the prob-
ability, although the density may be nonzero over infinite
regions of the sample space. This is the underlying phi-
losophy of prediction regions and boxplots. Clearly, there
are an infinite number of ways to choose a region with
given coverage probability. In some cases the nature of the
problem will suggest a specific region. (For instance, “one-
sided” regions of given coverage are uniquely defined.) Of-
ten, though, which region to use is not clear, and it is nec-
essary to decide what properties we wish the region to pos-
sess. The following criteria seem intuitively sensible:

1. The region should occupy the smallest possible vol-
ume in the sample space;

2. Every point inside the region should have probability
density at least as large as every point outside the region.

In fact, the criteria are equivalent (Box and Tiao 1973)
and lead to regions called highest density regions or HDR’s.
I shall define them more precisely using the second crite-
rion.

Definition. Let f(z) be the density function of a random
variable X. Then the 100(1 —a)% HDR is the subset R(f,)
of the sample space of X such that

R(fa) = {a: f(2) = fa}

where f,, is the largest constant such that Pr(X € R(f,)) >
1-a.
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Figure 1. Five Different 75% Probability Regions From a Normal
Mixture Density. Here, cq denotes the gth quantile, . denotes the mean,
and o denotes the standard deviation of the density.
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Standard Boxplots of Temperatures
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Figure 2. Boxplots for the Daily Maximum Temperature in Melbourne,
Australia Between 1981 and 1990. The bimodality of the distribution fol-
lowing a hot day, which is due to the possible onset of a cool change, is
only visible with the HDR boxplots.

The same definition also applies for discrete variables
with the density function replaced by the probability mass
function.

Figure 1 shows the particular value of f,5, which was
used to construct the 75% region shown.

HDRs of conditional densities
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Figure 3. An Extension of Figure 2. Highest density regions (60% and
99%) for tomorrow’s temperature conditional on today's temperature are
displayed. The conditional modes are marked by e for each conditioning
value.

It follows immediately from the definition that of all re-
gions of probability coverage 1 —«, the HDR has the small-
est possible volume in the sample space of X. Furthermore,
the mode is contained in every HDR. Unlike other proba-
bility regions, HDR’s are easily summarized, even for high
dimensions, as they are defined by a single number f,.

Such regions are common in Bayesian analysis where
they are applied to a posterior distribution (e.g., Box and
Tiao 1973). In that context they are also called “credible
sets,” “plausible sets,” “highest posterior density regions,”
or “Bayesian confidence sets.”

In the case of a normal distribution an HDR coincides
with the usual probability region symmetric about the mean,
spanning the /2 and 1 — «/2 quantiles. The same is true
for any unimodal, symmetric distribution. However, in the
case of a multimodal distribution, an HDR often consists
of several disjoint subregions. This provides useful infor-
mation which is “masked” by other probability regions.

We shall first demonstrate the value of highest density
regions by considering several graphical display methods
in Section 2. The computational algorithms that were used
to construct these graphs will be discussed in Section 3.

2. GRAPHICAL DISPLAY

2.1 HDR Boxplots

Boxplots, introduced by Tukey (1977), are a common
method for summarizing univariate samples. Several vari-
ations of boxplots are discussed by McGill, Tukey, and
Larsen (1978), Benjamini (1988), and Esty and Banfield
(1992). All of these boxplot variants include a central box
bounded by (); and Q3 where Q; and (3 denote sample
quartiles or approximate sample quartiles such as fourths.
Hence the box contains approximately 50% of the ob-
servations. The most common form of boxplot contains
“whiskers” extending to 1.5(Q3 — Q1) beyond the ends of
the central box. For a standard normal distribution the quar-
tiles are +.6745, so for a large data set, the whiskers lie at
approximately +[.6745 + 1.5(1.349)] = £2.698. Hence the
probability of an observation falling inside the whiskers is
approximately 1 — 2[1 — ®(2.698)] = 99.30% for large sam-
ples. (Hoaglin, Iglewicz, and Tukey (1986) show that for
small to moderate samples the probability of observations
inside the whiskers is smaller than this asymptotic rate.)

Here, I propose a new form of boxplot based on HDR’s
which summarizes the distribution in a similar way, but al-
lows the display of multimodality. An HDR boxplot re-
places the box bounded by the interquartile range with the
50% HDR. In both cases the coverage probability of the re-
gion is 50%, but only the HDR will display multimodality.
Similarly, the region bounded by the whiskers is replaced
by the 99% HDR. This is chosen to roughly reflect the
probability coverage of the whiskers on a standard boxplot
for a normal distribution. Data beyond the 99% HDR are
displayed as points. To emphasize the different densities of
the two regions, shaded boxes are used with higher density
shading in the 50% HDR. Finally, in keeping with the em-
phasis on highest density, the mode rather than the median
is marked by a horizontal line.
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Highest Density Forecast Regions for Blowfly data
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Figure 4. Forecast Means and 50% and 95% Forecast Regions for Nicholson’s Australian Blowfly Data Based on a Threshold Model for the

Logged Population.

Example. Figure 2 shows both standard and HDR box-
plots for the daily maximum temperature in Melbourne,
Australia between 1981 and 1990. The data are divided
according to the temperature of the previous day, and the
density for each group was estimated using a kernel den-
sity estimator (e.g., Scott 1992). The HDR boxplots were
calculated using the density quantile approach of Section
3. Both displays demonstrate that the mean and variance of
tomorrow’s temperature increase as today’s temperature in-
creases, except on very hot days (over 40°C) which tend to
be followed by cooler days. However, only the HDR box-
plots reveal the bimodality of the distribution of the temper-
ature following a warm to hot day. The 50% HDR’s consist
of two disjoint intervals showing that days of 30-39°C tend
to be followed by days of similar temperature or of much
lower temperature; they are not generally followed by days
with maximum temperature in the high 20s. This occurs
because temperatures slowly increase as high-pressure sys-
tems pass over the city from west to east. At the tail end
of a high-pressure system a strong north wind often blows
(from off the Australian mainland), bringing high tempera-
tures. A high-pressure system is often followed by a cold
front, causing a rapid drop in temperature. Hence hot days
are generally followed by days of similar or greater tem-
perature or by much cooler days. The hotter the day, the
more likely it is to be followed by a cool day.

The bimodality of these distributions is perhaps the most
interesting feature of these data. Yet standard boxplots give
no hint that such a feature exists.

The vaseplots of Benjamini (1988) can show some forms
of multimodality in that they allow the shape of the central
box to be proportional to a density estimate of the data.
However, there are several drawbacks to vaseplots com-
pared with HDR boxplots. If the modes are close to or out-
side the quartiles, as in the 30-34°C group of temperatures
in Figure 2, the vaseplots will not adequately display the
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multimodality. Also, for distributions with regions of very
low density between modes, HDR boxplots allow outliers to
be present between the modes, unlike vaseplots or any other
boxplot variant. Finally, unlike HDR boxplots, vaseplots do
not extend naturally to allow continuous conditioning or to
higher dimensions.

2.2 Conditional HDR’s

The preceding example is easily extended to allow a more
continuous display of the density of the maximum daily
temperature conditional on the previous day’s temperature.
The conditional densities were calculated using a kernel
approach as described in Hyndman, Bashtannyk, and Grun-
wald (in press), and the HDR’s conditional on the previous
day’s temperature being 7, 8, ..., 43 were computed. The
results are displayed in Figure 3. This display avoids the ar-
tificial grouping of Figure 2 and allows the gradual change
in the shape of the conditional densities to be seen more
clearly.

In forecasting it is common to compute the density of
future values conditional on observed values of the series
and the time horizon of the forecast. In this case the HDR’s
may be plotted against time.

Example. A famous dataset in nonlinear time series anal-
ysis is A. J. Nicholson’s blowfly data. These consist of the
number of Australian blowflies recorded every two days in
a caged population on a strictly controlled diet (Nicholson
1957). The data are also given in Brillinger, Guckenheimer,
Guttorp, and Oster (1980). Of particular interest are the
aperiodic population cycles. Tong (1988) fitted a threshold
autoregressive model to the log of the population. We are
interested in forecasting the process for the next 20 obser-
vation times. Hyndman (1995) used a Monte Carlo tech-
nique to obtain forecast densities of the logged population
at each time. These densities were then transformed back



to the original scale. The highest density forecast regions
were obtained from the densities on the original scale.

Figure 4 shows the 50% and 95% HDR’s for these dis-
tributions. The means of the forecast densities are plotted
as a solid line. The HDR’s clearly show positive skewness
and bimodality from time 203. The left hump becomes nar-
rower until time 207 and then widens again, so that by time
210, the humps corresponding to each mode have become
sufficiently small that the 50% HDR contains both modes.
The bimodality indicates uncertainty in the period of the
next population cycle: the lower mode corresponds to the
possibility of a minimum in the cycle, and the larger mode
corresponds to a possible maximum in the cycle. Standard
forecast regions, usually obtained from quantiles, are un-
able to show this bimodality.

2.3 HDR'’s for Multivariate Densities

It follows immediately from the definition that the bound-
ary of an HDR consists of those values of the sample space
with equal density. Hence a plot of a bivariate HDR is sim-
ply a form of contour plot. A bivariate HDR boxplot may
be constructed using the 50% HDR and 99% HDR, with
points lying outside the 99% HDR displayed as in a scat-
terplot. The mode is marked by a circle (o).

Example. Azzalini and Bowman (1990) examine dura-
tion and waiting times for eruptions from the Old Faith-
ful geyser in Yellowstone National Park, Wyoming. The
data were collected continuously from August 1 until Au-
gust 15, 1985. Several similar data sets have also been an-
alyzed: Weisberg (1985) and Denby and Pregibon (1987)
consider data collected in 1978 and 1979, and Cook and
Weisberg (1982) consider data collected in 1980. These au-
thors mainly consider the regression relationship between
the waiting time between eruptions and the previous erup-
tion duration.

The focus in this example is the bivariate density of the
duration of each eruption and the duration of the previous
eruption. There are 299 observations; the times are mea-
sured in minutes. Figure 5 shows a bivariate HDR boxplot
of the data based on a kernel estimate of the density. This

Bivariate HDR for Old Faithful geyser data

Current duration

Previous duration

Figure 5. A Bivariate HDR Boxplot for the Old Faithful Geyser Data.
The duration of each eruption is on the vertical axis; the duration of
the previous eruption is on the horizontal axis. Times are measured in
minutes.

is similar to a plot in Scott (1991) showing the contours of
an estimate of the analogous density for the 1978 data.

Figure 5 shows that eruptions tend to be either long
(around 4 minutes) or short (around 2 minutes), but rarely of
medium length (around 3 minutes). Furthermore, there are
never consecutive short eruptions. These observations are
not new; previous studies of Old Faithful data have noted
similar phenomena, and Azzalini and Bowman present a
tentative physical model for these eruption patterns.

The striking features of the Old Faithful data are much
more obvious from the HDR boxplot than from other bivari-
ate boxplots that have been proposed. Becketti and Gould
(1987) proposed a form of bivariate boxplot which sim-
ply superimposes the boxplots of the marginal variables on
the scatterplot. As such, it fails to capture any correlation,
let alone the unusual structure seen in Figure 5. Goldberg
and Iglewicz (1992) propose bivariate boxplots in which
both the inner region and outer region are constructed us-
ing four quarter-ellipses. Although their boxplot will show
the correlation and possibly the lack of data in the lower
left of the plot, it cannot reveal the presence of the three
modes because both regions must be convex. If the data
are from a unimodal density, then the boxplots of Gold-
berg and Iglewicz (1992) will yield very similar results to
HDR boxplots. Hence HDR bivariate boxplots are suitable
for a greater variety of data than the alternative bivariate
boxplots.

In three dimensions a highest density region is a shell in
three-dimensional space. If the density is trivariate normal,
the HDR’s are nested hyperellipsoids. David Scott (Scott
1991, 1992) has proposed a similar concept that he calls
an a-shell defined by the surfaces S, (z,v,z) = {(z,y,2)
: f(z,y, 2) = af(mode)}. In fact, these are HDR’s under a
different parameterization to that used in this article.

For d-dimensional densities where d > 3 Scott proposes
plotting a three-dimensional shell after conditioning on
d — 3 of the variables. Computer animation is also possi-
ble where the probability coverage is changed through time
or, for d > 3, one of the conditioned variables is changed
through time.

X = next duration
y = current duration
Z = previous duration

Figure 6. A 70% Trivariate HDR for the Old Faithful Geyser Data. The
density was computed from the duration and its two lagged variables.
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75% HDR: Exact density
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Figure 7. 50% and 75% HDR’s for the Mixture Density of Figure 1 With 95% Confidence Regions.

Example. Figure 6 shows the 70% HDR from the
trivariate density computed from the duration of the Old
Faithful geyser data and its first two lagged variables. If L
denotes a long duration and S a short duration, then the five
shells correspond to the situations SLS, SLL, LSL, LLS,
and LLL. The situations SSL, LSS, and SSS do not occur
as two short eruptions are never consecutive.

This example does not reveal any new information about
the geyser data that was not apparent in Figure 5. However,
it shows clearly the value of HDR plots in identifying clus-
ters in three-dimensional data. Using a three-dimensional
scatterplot, even with spinning, it is very difficult to spot
the five clusters because they tend to overlap when pro-
jected onto a two-dimensional plane.

3. CALCULATION OF HDR’S

For discrete-valued distributions, HDR’s simply consist
of those elements of the sample space with highest proba-
bility. Therefore computation is simple.

3.1 Numerical Integration Approach

For continuous distributions there have been several sug-
gestions for constructing an HDR from a general univariate
density f(z), which is a bounded, continuous function of
x. Wright (1986) proposed an algorithm involving numer-
ical integration of f(z), but he assumed the density was
unimodal and so restricted the HDR to a single interval.
Hyndman (1990) developed a more general algorithm that
computed an HDR for any given density where f(z) is a
bounded, continuous function of = and the inverse of f(z)
is uniquely defined in the neighborhood of the boundary of
the HDR. Both Wright and Hyndman use various numeri-
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cal methods to improve the speed of computation. However,
neither of these algorithms is easily generalized to multi-
variate densities. One major problem is the computational
difficulty in numerically integrating over a general region in
high-dimensional space. An alternative approach is required
that avoids explicit integration.

3.2 Density Quantile Approach

Let X be a (possibly multivariate) random variable with
density f(x). Rather than use numerical integration under
f(x), we may obtain information about the probability cov-
erage of a given region of the sample space using a Monte
Carlo technique.

Consider the random variable, Y = f(X), obtained by
transforming X by its own density function. Now f, is such
that Pr(f(X) > f,) =1 — a. So f, is the « quantile of Y.
Therefore f, can be estimated as a sample quantile from a
set of iid random variables with the same distribution as Y.

Let {xi1,...,x,} denote a set of independent observa-
tions from the density f(x). Then {f(x1),..., f(xn)} is a
set of independent observations from the distribution of Y.
Let f(,) be the jth largest of {f(x;)} so that f;) is the (j/n)
sample quantile of Y. We shall use f(; as an estimate of f,.
Specifically, we choose f, = f;) where j = [an|. Then
fa — fo asn — oo, and s0 R(f,) — R(fs) as n — co.

If f(x) is a known function, the observations will usually
be generated pseudorandomly. The approximation can be
made arbitrarily accurate by increasing n.

Often, however, we will not know the density f(x), but
will have a set of iid observations {y1, ...,y from an un-
known density. In this case f(x) may be estimated empiri-



hdrboxplot <- function(x, y, a, b, ...)

# Input: x and y are independent observations on a density f(x,y).
# Call: density2d(x,y,x0,y0,a,b) returns a vector containing the
# estimated density of (x,y) at the points x0,y0 using the
# smoothing parameters a and b.

# Output: bivariate HDR boxplot
{

fxy <- density2d(x, y, x, y, a, b)
falpha <- quantile(fxy, c(0.01, 0.5))
range.x <- diff(range(x))
range.y <- diff(range(x))
grid <- expand.grid(list(
x = seq(min(x)-0.2%range.x, max(x)+0.2%range.x, length=20),
y = seq(min(y)-0.2*range.y, max(y)+0.2%range.y, length=20)))
fxy.grid <- density2d(x, y, grid$x, grid$y, a, b)
junk <- contour(interp(grid$x,grid$y,fxy.grid),levels=falpha,
xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
labex=0, save=T, plotit=T, ...)
polygon(junk[[111$x, junk[[1]1$y, col=4)
polygon(junk[[2]1]1$x, junk[[2]1]1$y, col=2)
index <~ fxy < 0.999*falpha[1]
points(x[index], y[index])
index <- (1:length(x))[fxy==max(fxy)]
points(x[index],y[index],pch="o")

Figure 8. Splus Code for Bivariate Data: Computes f, Using the
Density Quantile Algorithm and Plots an HDR Boxplot.

cally from {y1,...,ym} (see, for example, Scott 1992). If m
is large, there is no need to generate the sample {x1,...x,}
as the actual observations {yi,...,y»} may be used di-
rectly by setting n = m and x; = y;. If m is moderate, it
may be preferable to generate “observations” {xi,...,X,}
pseudorandomly from the density estimate. For small m it
may not be possible to get a reasonable density estimate.
Besides, with few observations and no prior knowledge of
the underlying density, there seems little point in attempting
to summarize the sample space. See Wand and Jones (1995)
for some discussion on the number of observations needed
for a reasonable density estimate. Note that the problem
here is not with the density quantile algorithm (that will
give results to an arbitrary degree of accuracy given a den-
sity), but with estimating the density from insufficient data.

A crude form of the density quantile algorithm can also
be found in Tanner (1993, pp. 70-71) in the context of a
posterior density from a data-augmentation algorithm.

The density quantile algorithm was used to estimate the
HDR’s displayed in Section 2.

3.3 Confidence Regions for Estimated HDR’s

Because the density quantile algorithm involves a statis-
tical approximation, it is helpful to compute some uncer-
tainty limits on the estimated regions. Here I only consider
the case where X is univariate.

We first obtain the distribution of ¥ = f(X). Let {z;}
denote those points in the sample space of X such that
f(z) =y,i=1,2,...,n(y). That is, {z;} denote the end-
points of the subintervals that make up R(y). Also define
Ay) = [, f(w)du so that A(fa) = 1 — a. Then for

small 6

n(y)

Aly+6) = Aly) — oy Z If"(z)| 71 + O(8%)
and so =

n(y)
ROV

Now Pr(Y <y) =1 — A(y). Therefore the density of Y is
simply

n(y)
9(y) = ———-dfi;y) =y > |z
i=1

Then, using the standard asymptotic results for a sample
quantile (e.g., Cox and Hinkley 1974), we have that fa
is asymptotically normally distributed with mean f, and
variance a(1 — a)/n[g(f.)]>. We can use this result to ob-
tain a confidence interval for f,, say [fL, fu]. Then R(fL)
and R(fy) represent lower and upper confidence regions
for R(fa).

The top two plots of Figure 7 show 50% and 90% HDR’s
for the mixture density of figure 1. The estimate of f, and
a 95% confidence interval for f, are shown as horizontal
lines. The HDR estimate is shown as the dark shaded region,
and the values of R(fr) and R(fy) are shown with lighter
shading. Here, n = 200 has been used to compute the HDR.

To assess the effect of using an empirical density esti-
mate rather than the actual density, f(x), analogous plots
are shown in the bottom half of Figure 7. Here, the density
was estimated using a kernel estimator from the 200 obser-
vations. The additional variability in the HDR estimate due
to the density estimation seems to be relatively small.

3.4 Computational Details and Timing

The density quantile algorithm and the computation of
confidence regions has been implemented in Splus. For ex-
ample, Figure 8 gives code for producing a bivariate boxplot
as displayed in Figure 5. Here, the data are used directly in
the algorithm by setting n = m and x; = y,. This function
can be easily modified to produce other HDR’s or to com-
pute the density from a known function rather than use an
empirical estimate.

Note that two calls must be made to the function den-
sity2d, one to compute the density at each of the obser-
vation points, and one to compute the density on a 20 x 20
grid. Linear interpolation is used between the grid points
when computing the contour.

Most of the computational work in this function is in es-
timating the density using density2d. Hence the speed of
the function depends largely on the speed of density2d.
Using a relatively slow implementation of bivariate kernel
density estimation, Figure 5 was produced using this func-
tion in 6.1 seconds of processor time on Splus 3.1 running
on a DECstation 5000/25. With a faster implementation
of density estimation, using the ideas of Fan and Marron
(1994), this time should be able to be reduced substantially.

Ironically, it is more difficult to plot a univariate HDR
than a bivariate HDR because there is no equivalent of the
contour function in one dimension. Therefore a new func-
tion has been written for this purpose. Again, the density
is computed (or estimated) on a grid of values; between
the grid points, spline interpolation is used. Table 1 shows
the processor times (in seconds) to compute an HDR and
its associated 95% confidence regions using a DECstation
5000/25 running Splus 3.1. The mixture density of Figure

The American Statistician, May 1996, Vol. 50, No. 2 125



Table 1. Processor Times (in seconds) for Splus to
Compute an HDR and Its Associated 95% Confidence
Regions for the Mixture Density of Figure 1

a
n 5 25 05 o1
10,000 1.38 1.64 1.45 1.36
1,000 1.01 1.28 1.19 1.02
200 1.09 1.25 .85 .76

1 was used and measurements were made for different val-
ues of n and «.. Because the density is known in this case,
kernel density estimation was not necessary.

The Splus code used to find HDR’s and produce HDR
boxplots in one and two dimensions can be obtained from
the S archive of statlib@]lib.stat.cmu.edu.

[Received April 1993. Revised October 1994.]
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