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ABSTRACT Evolutionary trees are often estimated from
DNA or RNA sequence data. How much confidence should we
have in the estimated trees? In 1985, Felsenstein [Felsenstein,
J. (1985) Evolution 39, 783–791] suggested the use of the
bootstrap to answer this question. Felsenstein’s method,
which in concept is a straightforward application of the
bootstrap, is widely used, but has been criticized as biased in
the genetics literature. This paper concerns the use of the
bootstrap in the tree problem. We show that Felsenstein’s
method is not biased, but that it can be corrected to better
agree with standard ideas of confidence levels and hypothesis
testing. These corrections can be made by using the more
elaborate bootstrap method presented here, at the expense of
considerably more computation.

The bootstrap, as described in ref. 1, is a computer-based
technique for assessing the accuracy of almost any statistical
estimate. It is particularly useful in complicated nonparametric
estimation problems, where analytic methods are impractical.
Felsenstein (2) introduced the use of the bootstrap in the
estimation of phylogenetic trees. His technique, which has
been widely used, provides assessments of ‘‘confidence’’ for
each clade of an observed tree, based on the proportion of
bootstrap trees showing that same clade. However Felsen-
stein’s method has been criticized as biased. Hillis and Bull’s
paper (3), for example, says that the bootstrap confidence
values are consistently too conservative (i.e., biased down-
ward) as an assessment of the tree’s accuracy.
Is the bootstrap biased for the assessment of phylogenetic

trees? We will show that the answer is no, at least to a first
order of statistical accuracy. Felsenstein’s method provides a
reasonable first approximation to the actual confidence levels
of the observed clades. More ambitious bootstrap methods can
be fashioned to give still better assessments of confidence. We
will describe one such method and apply it to the estimation of
a phylogenetic tree for the malaria parasite Plasmodium.

Bootstrapping Trees

Fig. 1 shows part of a data set used to construct phylogenetic
trees for malaria. The data are the aligned sequences of small
subunit RNA genes from 11 malaria species of the genus
Plasmodium. The 11 3 221 data matrix we will first consider
is composed of the 221 polytypic sites. Fig. 1 shows the first 20
columns of x. There are another 1399 monotypic sites, where
the 11 species are identical.
Fig. 2 shows a phylogenetic tree constructed from x. The

tree-building algorithm proceeds in two main steps: (i) an 11
3 11 distance matrix D̂ is constructed for the 11 species, mea-
suring differences between the row vectors of x; and (ii) D̂ is
converted into a tree by a connection algorithm that connects

the closest two entries (species 9 and 10 here), reduces D̂ to a
10 3 10 matrix according to some merging rule, connects the
two closest entries of the new D matrix, etc.
We can indicate the tree-building process schematically as

x 3 D̂ 3 TRÊE,

the hats indicating that we are dealing with estimated quan-
tities. A deliberately simple choice of algorithms was made in
constructing Fig. 2: D̂was thematrix of the Euclidean distances
between the rows of x, with (A, G, C, T) interpreted numer-
ically as (1, 2, 5, 6), while the connection algorithm merged
nodes by maximization. Other, better, tree-building algorithms
are available, as mentioned later in the paper. Some of these,
such as the maximum parsimony method, do not involve a
distance matrix, and some use all of the sites, including the
monotypical ones. The discussion here applies just as well to
all such tree-building algorithms.
Felsenstein’s method proceeds as follows. A bootstrap data

matrix x* is formed by randomly selecting 221 columns from
the original matrix x with replacement. For example the first
column of x* might be the 17th column of x, the second might
be the 209th column of x, the third the 17th column of x, etc.
Then the original tree-building algorithm is applied to x*,
giving a bootstrap tree TRÊE*,

x* 3 D̂* 3 TRÊE*,

This whole process is independently repeated some large
number B times, B 5 200 in Fig. 2, and the proportions of
bootstrap trees agreeing with the original tree are calculated.
‘‘Agreeing’’ here refers to the topology of the tree and not to
the length of its arms.
These proportions are the bootstrap confidence values. For

example the 9-10 clade seen in Fig. 2 appeared in 193 of the
200 bootstrap trees, for an estimated confidence value of 0.965.
Species 7-8-9-10 occurred as a clade in 199 of the 200 bootstrap
trees, giving 0.995 confidence. (Not all of these 199 trees had
the configuration shown in Fig. 2; some instead first having 8
joined to 9-10 and then 7 joined to 8-9-10, as well as other
variations.)2
Felsenstein’s method is, nearly, a standard application of the

nonparametric bootstrap. The basic assumption, further dis-
cussed in the next section, is that the columns of the datamatrix
x are independent of each other and drawn from the same
probability distribution. Of course, if this assumption is a bad
one, then Felsenstein’s method goes wrong, but that is not the
point of concern here nor in the references, and we will take
the independence assumption as a given truth.
The bootstrap is more typically applied to statistics û that

estimate a parameter of interest u, both û and u being single
numbers. For example, û could be the sample correlation
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coefficient between the first two malaria species, Pre and Pme,
at the 221 sites, with (A,G, C, T) interpreted as (1, 2, 5, 6): û 5
0.616. How accurate is û as an estimate of the true correla-
tion u? The nonparametric bootstrap answers such questions
without making distributional assumptions.
Each bootstrap data set x* gives a bootstrap estimate û*, in

this case the sample correlation between the first two rows of
x*. The central idea of the bootstrap is to use the observed
distribution of the differences û*2 û to infer the unobservable
distribution of û 2 u; in other words to learn about the accuracy
of û. In our example, the 200 bootstrap replications of û* 2 û
were observed to have expectation 0.622 and standard devi-
ation 0.052. The inference is that û is nearly unbiased for
estimating u, with a standard error of about 0.052. We can also
calculate bootstrap confidence intervals for u. A well-
developed theory supports the validity of these inferences [see
Efron and Tibshirani (1)].
Felsenstein’s application of the bootstrap is nonstandard in

one important way: the statistic TRÊE, unlike the correlation
coefficient, does not change smoothly as a function of the data
set x. Rather, TRÊE is constant within large regions of the
x-space, and then changes discontinuously as certain bound-
aries are crossed. This behavior raises questions about the
bootstrap inferences, questions that are investigated in the
sections that follow.

A Model For The Bootstrap

The rationale underlying the bootstrap confidence values
depends on a simple multinomial probability model. There are
K 5 411 2 4 possible column vectors for x, the number of
vectors of length 11 based on a 4-letter alphabet, not counting
the 4 monotypic ones. Call these vectors X1, X2, . . ., XK, and
suppose that each observed column of x is an independent

selection from X1, X2, . . ., XK, equaling Xk with probability pk.
This is the multinomial model for the generation of x.
Denote

˜
p 5 (p1, p2,. . ., pK), so the sum of

˜
p ’s coordinates

is 1. The data matrix x can be characterized by the proportion
of its n 5 221 columns equalling each possible Xk, say

p̂k 5 #$columns of x equalling Xk%yn,

with
˜
p̂ 5 (p̂1, p̂2, . . ., p̂K). This is a very inefficient way to

represent the data, since 411 2 4 is so much bigger than 221,
but it is useful for understanding the bootstrap. Later we will
see that only the vectors Xk that actually occur in x need be
considered, at most n of them.
Almost always the distance matrix D̂ is a function of the

observed proportions
˜
p̂, so we can write the tree-building

algorithm as

p̂
˜
3 D̂ 3 TRÊE.

In a similar way the vector of true probabilities
˜
p gives a true

distance matrix and a true tree,

p
˜
3 D 3 TREE.

D would be the matrix with ijth element {(kpk(Xki 2 Xk j)2}
1y2

in our example, and TREE the tree obtained by applying the
maximizing connection algorithm to D.
Fig. 3 is a schematic picture of the space of possible

˜
p

vectors, divided into regions 51, 52, . . .. The regions corre-
spond to different possible trees, so if p

˜
[ 5j the jth possible

tree results. We hope that TRÊE 5 TREE, which is to say

FIG. 1. Part of the data matrix of aligned nucleotide sequences for the malaria parasite Plasmodium. Shown are the first 20 columns of the 11
3 221 matrix x of polytypic sites used in most of the analyses below. The final analysis of the last section also uses the data from 1399 monotypic
sites.

FIG. 2. Phylogenetic tree based on the malaria data matrix; species
are numbered as in Fig. 1. The numbers at the branches are confidence
values based on Felsenstein’s bootstrap method. B 5 200 bootstrap
replications.

FIG. 3. Schematic diagram of tree estimation; triangle represents
the space of all possible

˜
p vectors in the multinomial probability

model; regions 51, 52. . . correspond to the different possible trees.
In the case shown

˜
p and

˜
p̂ lie in the same region so TREE 5

TRÊE, but
˜
p̂* lies in a region where TRÊE* does not have the 9-10

clade.
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that
˜
p and

˜
p̂ lie in the same region, or at least that TRÊE and

TREE agree in their most important aspects.
The bootstrap data matrix x* has proportions of columns say

p̂k
* 5 #$columns of x* equalling Xk%yn,

p̂
˜
* 5 (p̂1*, p̂2

*, . . . . , p̂K
* ). We can indicate the bootstrap

tree-building

p̂
˜
* 3 D̂* 3 TRÊE*,

The hypothetical example of Fig. 3 puts
˜
p and

˜
p̂ in the same

region, so that the estimate TRÊE exactly equals the true
TREE. However

˜
p̂* lies in a different region, with TRÊE* not

having the 9-10 clade. This actually happened in 7 out of the
200 bootstrap replications for Fig. 2.
What the critics of Felsenstein’s method call its bias is the

fact that the probability TRÊE* 5 TREE is usually less than
the probability TRÊE5 TREE. In terms of Fig. 3, this means
that

˜
p̂* has less probability than

˜
p̂ of lying in the same region

as
˜
p. Hillis and Bull (3) give specific simulation examples. The

discussion below is intended to show that this property is not
a bias, and that to a first order of approximation the bootstrap
confidence values provide a correct assessment of TRÊE’s
accuracy. A more valid criticism of Felsenstein’s method,
discussed later, involves its relationship with the standard
theory of statistical confidence levels based on hypothesis tests.
Returning to the correlation example of the previous sec-

tion, it is not true that û* 2 u (as opposed to û* 2 û) has the
same distribution asû 2 u, even approximately. In factû*2 uwill
have nearly twice the variance of û 2 u, the sum of the variances
of û around u and of û* around û. Similarly in Fig. 3 the average
distance from

˜
p̂* to

˜
p will be greater than the average distance

from
˜
p̂ to

˜
p. This is the underlying reason for results like those of

Hillis and Bull, that
˜
p̂* has less probability than

˜
p̂ of lying in the

same region as
˜
p. However, tomake valid bootstrap inferenceswe

need to use the observed differences between TRÊE* and
TRÊE (not betweenTRÊE* andTREE) to infer the differences
between TRÊE and TREE. Just how this can be done is
discussed using a simplified model in the next two sections.

A Simpler Model

The meaning of the bootstrap confidence values can be more
easily explained using a simple normal model rather than the
multinomial model. This same tactic is used in Felsenstein and
Kishino (4). Now we assume that the data x 5 (x1, x2) is a two
dimensional normal vector with expectation vector m 5 (m1,
m2) and identity covariance matrix, written

x , N2~m, I!.

In other words x1 and x2 are independent normal variates with
expectations m1 and m2, and variances 1. The obvious estimate
of m is m̂ 5 x, and we will use this notation in what follows. The
m-plane is partitioned into regions 51, 52, 53, . . . similarly to
Fig. 3. We observe that m̂ lies in one of these regions, say 51,
and we wish to assign a confidence value to the event that m
itself lies in 51.
Two examples are illustrated in Fig. 4. In both of them x 5

m̂ 5 (4.5,0) lies in 51, one of two possible regions. Case I has
52 5 {m : m1 # 3}, a half-plane, while case II has 52 5 {m :
imi #3}, a disk of radius 3.
Bootstrap sampling in our simplified problem can be taken

to be

x* , N2~m̂, I!.

This is a parametric version of the bootstrap, as in section 6.5
of Efron and Tibshirani (1), rather than the more familiar
nonparametric bootstrap considered previously, but it pro-
vides the proper analogy with the multinomial model. The
dashed circles in Fig. 4 indicate the bootstrap density of m̂* 5
x*, centered at m̂. Felsenstein’s confidence value is the boot-
strap probability that m̂* lies in 51, say

ã 5 Probm̂$m̂* [ 51%.

The notation Probm̂ emphasizes that the bootstrap probability
is computed with m̂ fixed and only m̂* random. The bivariate
normal model of this section is simple enough to allow the ã
values to be calculated theoretically, without doing simula-
tions,

ãI 5 0.933 and ãII 5 0.949.

Notice that ãII is bigger than ãI because51 is bigger in case II.
In our normal model, m̂* 2 m̂ has the same distribution as

m̂ 2 m, both distributions being the standard bivariate normal
N2(0, I). The general idea of the bootstrap is to use the
observable bootstrap distribution of m̂* 2 m̂ to say something
about the unobservable distribution of the error m̂ 2 m. Notice,
however, that the marginal distribution of m̂* 2 m has twice as
much variance,

m̂* 2 m , N2~O, 2I!.

This generates the ‘‘bias’’ discussed previously, that m̂* has less
probability than m̂ of being in the same region as m. But this
kind of interpretation of bootstrap results cannot give correct
inferences. Newton (5) makes a similar point, as do Zharkikh
and Li (6) and Felsenstein and Kishino (4).
We can use a Bayesian model to show that ã is a reasonable

assessment of the probability that 51 contains m. Suppose we
believe apriori that m could lie anywhere in the plane with
equal probability. Then having observed m̂, the aposteriori
distribution of m given m̂ is N2(m̂, I), exactly the same as the
bootstrap distribution of m̂*. In other words, ã is the aposteriori
probability of the event m [ 51, if we begin with an ‘‘unin-
formative’’ prior density for m.
Almost the same thing happens in the multinomial model.

The bootstrap probability that TRÊE* 5 TRÊE is almost the
same as the aposteriori probability that TREE 5 TRÊE
starting from an uninformative prior density on

˜
p [see section

10.6 of Efron (7)]. The same statement holds for any part of
the tree, for example the existence of the 9-10 clade in Fig. 2.
There are reasons for being skeptical about the Bayesian
argument, as discussed in the next section. However, the
argument shows that Felsenstein’s bootstrap confidence values
are at least reasonable and certainly cannot be universally
biased downward.

FIG. 4. Two cases of the simple normal model; in both we observe
m̂ 5 (4.5, 0) [ 51, and wish to assign a confidence value to m [ 51.
Case I, 52 is the region {m1 # 3}. Case II, 52 is the region {imi , 3}.
The dashed circles indicate bootstrap sampling m̂* ; N2(m̂, I).
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Hypothesis-Testing Confidence Levels

Fig. 5 illustrates another more customary way of assigning a
confidence level to the event m [ 51. In both case I and case
II, m̂0 5 (3, 0) is the closest point to m̂ on the boundary
separating51 from52. We now bootstrap from m̂0 rather than
from m̂, obtaining bootstrap data vectors

x** , N2~m̂0, I!.

[The double star notation is intended to avoid confusion with
the previous bootstrap vectors x* ; N2(m̂, I).] The confidence
level â for the eventm [ 51 is the probability that the bootstrap
vector m̂** 5 x** lies closer than m̂ to the boundary. This has
a familiar interpretation: 12 â is the rejection level, one-sided,
of the usual likelihood ratio test of the null hypothesis that m
does not lie in51. Here we are computing â numerically, rather
than relying on an asymptotic x2 approximation. In a one-
dimensional testing problem, 1 2 â would exactly equal the
usual p value obtained from the test of the null hypothesis that
the true parameter value lies in 52.
Once again it is simple to compute the confidence level for

our two cases, at least numerically,

âI 5 0.933 and âII 5 0.914.

In the first case âI equals ãI, the Felsenstein bootstrap
confidence value. However âII 5 0.914 is less than ãII 5 0.949.
Why do the answers differ? Comparing Figs. 4 and 5, we see

that, roughly speaking, the confidence value ã is a probabilistic
measure of the distance from m̂ to the boundary, while the
confidence level â measures distance from the boundary to m̂.
The two ways of measuring distance agree for the straight
boundary, but not for the curved boundary of case II. Because
the boundary curves away from m̂, the confidence value ã is
increased from the straight-line case. However the set of
vectors further than m̂ from the boundary curves toward m̂0,
which decreases â. We would get the opposite results if the
boundary between 51 and 52 curved in the other direction.
The confidence level â, rather than ã, provides the more

usual assessment of statistical belief. For example in case II let
u 5 imi be the length of the expectation vector m. Then â 5
0.914 is the usual confidence level attained for the event
{u $ 3}, based on observing û 5 im̂i 5 4.5. And {u $ 3} is the
same as the event {m [ 51}.
Using the confidence value ã is equivalent to assuming a flat

Bayesian prior for m. It can be shown that using â amounts,
approximately, to assuming a different prior density for m, one
that depends on the shape of the boundary. In case II this prior
is uniform on polar coordinates for m, rather than uniform on
the original rectangular coordinates [see Tibshirani (8)].

The Relationship Between the Two Measures of Confidence

There is a simple approximation formula for converting a
Felsenstein confidence value ã to a hypothesis-testing confi-
dence level â. This formula is conveniently expressed in terms
of the cumulative distribution function F(z) of a standard
one-dimensional normal variate, and its inverse function
F21: F(1.645) 5 0.95, F21(0.95) 5 1.645, etc. We define the
‘‘z values’’ corresponding to ã and â,

z̃ 5 F21~ã! and ẑ 5 F21~â!.

In case II, z̃ 5 F21(0.949) 5 1.64 and ẑ 5 F21(0.914) 5 1.37.
Now let m̂** ; N2(m̂0, I) as in Fig. 5, and define

z0 5 F21~Probm̂o $m̂** [ R1%!.

For case I it is easy to see that z0 5 F21(0.50) 5 0. For case
II, standard calculations show that z0 5 F21(0.567) 5 0.17.
In normal problems of the sort shown in Figs. 4 and 5 we can

approximate ẑ in terms of z̃ and z0:

ẑ 8 z̃ 2 2z0. [1]

Formula 1 is developed in Efron (9), where it is shown to have
‘‘second order accuracy.’’ This means that in repeated sam-
pling situations [where we observe independent data vectors
x1 , x2 , . . . , xn ; N2(m, I) and estimate m by m̂ 5 ( i

n5 xiyn]
z0 is of order 1y=n, and formula 1 estimates ẑ with an error
of order only 1yn.
Second-order accuracy is a large sample property, but it

usually indicates good performance in actual problems. For
case I, Eq. 1 correctly predicts ẑ5 z̃, both equallingF21(0.933)
5 1.50. For case II the prediction is ẑ 5 1.64 2 0.34 5 1.30,
compared with the actual value ẑ 5 1.37.
Formula 1 allows us to compute the confidence level â for

the event {m [ 51} solely in terms of bootstrap calculations,
no matter how complicated the boundary may be. A first level
of bootstrap replications with m̂* ; N2(m̂, I) gives bootstrap
data vectors m̂*(1), m̂*(2), . . ., m̂*(B), from which we calculate

z̃ 5 F21 S#$m̂* vectors in 51%

B D .
A second level of bootstrap replications with m̂** ; N2(m̂0, I),
giving say m̂**(1), m̂**(2), . . ., m̂**(B2), allows us to calculate

ẑ0 5 F21 S#$m̂** vectors in 51%

B2
D .

Then formula 1 gives ẑ 5 z̃ 2 2z0.
As few as B 5 100, or even 50, replications m̂* are enough

to provide a rough but useful estimate of the confidence value
ã. However, because the difference between z̃ 5 F21(ã) and
ẑ 5 F21(â) is relatively small, considerably larger bootstrap
samples are necessary to make formula 1 worthwhile. The
calculations in section 9 of Efron (9) suggest both B and B2
must be on the order of at least 1000. This point did not arise
in cases I and II where we were able to do the calculations by
direct numerical integration, but it is important in the kind of
complicated tree-construction problems we are actually con-
sidering.
We now return to the problem of trees, as seen in Fig. 2. The

version of formula 1 that applies to the multinomial model of
Fig. 3 is

ẑ 5
z̃ 2 z0

1 1 a~z̃ 2 z0!
2 z0. [2]

Here ‘‘a’’ is the acceleration constant introduced in ref. 9. It is
quite a bit easier to calculate than z0, as shown in the next

FIG. 5. Confidence levels of the two cases in Fig. 4; m̂0 5 (3, 0) is
the closest point to m̂ 5 (4.5, 0) on the boundary separating 51 from
52; bootstrap vector m̂** ; N2(m̂0, I). The confidence level â is the
probability that m̂** is closer than m̂ to the boundary.
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section. Formula 2 is based on the bootstrap confidence
intervals called ‘‘BCa’’ in ref. 9.
If we tried to draw Fig. 3 accurately we would find that the

multi-dimensional boundaries were hopelessly complicated.
Nevertheless, formula 2 allows us to obtain a good approxi-
mation to the hypothesis-testing confidence level â 5 F(ẑ)
solely in terms of bootstrap computations. How to do so is
illustrated in the next section.

An Example Concerning the Malaria Data

Fig. 2 shows an estimated confidence value of

ã 5 0.965

for the existence of the 9-10 clade on the malaria evolutionary
tree. This value was based on B 5 200 bootstrap replications,
but (with some luck) it agrees very closely with the value ã 5
0.962 obtained from B 5 2000 replications. How does ã
compare with â, the hypothesis-testing confidence level for the
9-10 clade? We will show that

â 5 0.942

(or â 5 0.938 if we begin with ã 5 0.962 instead of 0.965). To
put it another way, our nonconfidence in the 9-10 clade goes
from 1 2 ã 5 0.035 to 1 2 â 5 0.058, a substantial change.
We will describe, briefly, the computational steps necessary

to compute â. To do so we need notation for multinomial
sampling. Let P5 (P1, P2, . . ., Pn) indicate a probability vector
on n 5 221 components, so the entries of the vector P are
nonnegative numbers summing to 1. The notation

P* , Mult~P!

will indicate that P* 5 (P1*, P2*, . . . , Pn*) is the vector of
proportions obtained in a multinomial sample of size n from
P. In other words we independently draw integers I1*, I2*, . . , In*

from {1, 2, . . , n} with probability Pk on k, and record the
proportions Pk* 5 #{Ii* 5 k}yn. This is the kind of multinomial
sampling pictured in Fig. 3, expressed more efficiently in terms
of n 5 221 coordinates instead of K 5 411 2 4.
Each vector P* is associated with a data matrix x* that has

proportion Pk* of its columns equal to the kth column of the
original data matrix x. Then P* determines a distance matrix
and a tree according to the original tree-building algorithm,

P* 3 D̂* 3 TRÊE*.

The ‘‘central’’ vector

P~cent! 5 ~1yn, 1yn, . . . , 1yn!

corresponds to the original data matrix x and the original tree
TRÊE. Notice that taking P*;Mult(P(cent)) amounts to doing
ordinary bootstrap sampling, since then x* has its columns
chosen independently and with equal probability from the
columns of x.
Resampling from P(cent) means that each of the 221 columns

is equally likely, but this is not the same as all possible 11
vectors being equally likely. There were only 149 distinct 11
vectors among the columns of x, and these are the only ones
that can appear in x*. The vector TTTTCTTTTTT appeared
seven times among the columns of x, so it shows up seven times
as frequently in the columns of x*, compared with ATA-
AAAAAAAA which appeared only once in x.
Here are the steps in the computation of â.
Step 1. B 5 2000 first-level bootstrap vectors P*(1), P*(2),

. . ., P*(B) were obtained as independent multinomials P* ;
Mult(P(cent)). Some 1923 of the corresponding bootstrap trees
had the 9-10 clade, giving the estimate ã 5 0.9625 1923y2000.

Step 2.The first 200 of these included seven cases without the
9-10 clade. Call the seven P* vectors P(1), P(2), . . ., P(7). For each
of them, a value of w between 0 and 1 was found such that the
vector

p~ j! 5 w z P~ j! 1 ~1 2 w!P~cent!

was right on the 9-10 boundary. The vectors p(j) play the role
of m̂0 in Fig. 5.
Finding w is easy using a one-dimensional binary search

program, as on page 90 of ref. 10. At each step of the search
it is only necessary to check whether or not the current value
of wP( j) 1 (1 2 w)P(cent) gives a tree having the 9-10 clade.
Twelve steps of the binary search, the number used here,
locates the boundary value of w within 1y212. The vectors p(j)
play the role of m̂0 in Fig. 5.
Step 3. For each of the boundary vectors p(j) we generated

B2 5 400 second-level bootstrap vectors

P** , Mult~p~ j!!,

computed the corresponding tree, and counted the number of
trees having the 9-10 clade. The numbers were as follows for
the seven cases:

Case No. B2
1 218 400
2 204 400
3 223 400
4 214 400
5 213 400
6 216 400
7 223 400

Total 1151 2800

From the total we calculated an estimate of the correction term
z0 in formula 2,

z0 5 F21S15112800D 5 0.0995.

Binomial calculations indicate that z0 5 0.0995 has a stan-
dard error of about 0.02 due to the bootstrap sampling (that is,
due to taking 2800 instead of all possible bootstrap replica-
tions), so 2800 is not lavishly excessive. Notice that we could
have started with the 77 out of the 2000 P* vectors not having
the 9-10 clade, rather than the 7 out of the first 200, and taken
B2 5 40 for each p(j), giving about the same total second-level
sample.
Step 4. The acceleration constant ‘‘a’’ appearing in formula

2 depends on the direction from P(cent) to the boundary, as
explained in section 8 of ref. 9. For a given direction vector U,

a~U! 5
1
6 O

1

n

Uk3y~O
1

n

Uk2!3y2.

Taking U 5 p(j) 2 P(cent) for each of the seven cases gave

Case a
1 0.014
2 0.009
3 0.014
4 0.012
5 0.014
6 0.012
7 0.014

Average 0.0129
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Step 5. Finally we applied formula 2 with z̃ 5 F21(0.962) 5
1.77, z0 5 0.0995, and a 5 0.0129, to get ẑ 5 1.54, or â 5 F(ẑ)
5 0.938. If we begin with z̃ 5 F21(0.965) then â 5 0.942.
Notice that in this example we could say that Felsenstein’s

bootstrap confidence value ã was biased upward, not down-
ward, at least compared with the hypothesis-testing level â.
This happened because z0 was positive, indicating that the 9-10
boundary was curving away from P(cent), just as in case 2 of
Fig. 5. The opposite can also occur, and in fact did for other
clades. For example the clade at the top of Fig. 2 that includes
all of the species except lizard (species 2) had ã 5 0.775
compared with â 5 0.875.
We carried out these same calculations using the more

efficient tree-building algorithm employed in Escalante and
Ayala (11); that is we used Felsenstein’s PHYLIP package (12)
on the complete RNA sequences, neighbor-joining trees based
on Kimura’s (13) two-parameter distances.
In order to vary our problem slightly, we looked at the clade

7-8 (Pfr-Pkn), which is more questionable than the 9-10 clade.
The tree produced from the original set is:

Step 1. B 5 2000 first-level bootstrap vectors. Some 1218 of
the corresponding bootstrap trees had the 7-8 clade, giving the
estimate ã 5 0.609 5 1218y2000.
Step 2. We took, as before, seven cases without the 7-8 clade,

and for each one found a multinomial vector near the 7-8
boundary.
Step 3. For each of the boundary vectors p(j) we generated

B2 5 400 second-level bootstrap vectors

P** , Mult~p~j!!,

computed the corresponding tree, and counted the number of
trees having the 7-8 clade. The numbers were as follows for the
seven cases:

Case No. B2
1 120 400
2 184 400
3 145 400
4 187 400
5 176 400
6 197 400
7 240 400

Total 1249 2800

From the total we calculated an estimate of the correction term
z0 in formula 2,

z0 5 F21 S12492800D 5 2 0.136

Step 4. The acceleration constant ‘‘a’’ appearing in formula 2
was computed as before giving:

Case a
1 20.118
2 20.0176
3 0.0172
4 20.0256
5 0.00981
6 20.0540
7 20.0198

Average 20.0296

Step 5. Finally we applied formula 2 with z̃ 5 F21(0.609) 5
0.277 to get ẑ 5 0.417, or â 5 F(ẑ) 5 0.662. In this case â is
bigger than ã, reflecting the fact that the 7-8 boundary curves
toward the central point, at least in a global sense.
Computing â is about 20 times as much work as ã, but it is

work for the computer and not for the investigator. Once the
tree-building algorithm is available, all of the computations
require no more than applying this algorithm to resampled
versions of the original data set.

Discussion and Summary

The discussion in this paper, which has gone lightly over many
technical details of statistical inference, makes the following
main points about the bootstrapping of phylogenetic trees.
(i) The confidence values ã obtained by Felsenstein’s boot-

strap method are not biased systematically downward.
(ii) In a Bayesian sense, the ã can be thought of as

reasonable assessments of error for the estimated tree.
(iii)More familiar non-Bayesian confidence levels â can also

be defined. Typically â and ã will converge as the number n of
independent sites grows large, at rate 1y=n.
(iv) The â can be estimated by a two-level bootstrap

algorithm.
(v) As few as 100 or even 50 bootstrap replications can give

useful estimates of ã, while â estimates require at least 2000 total
replications. None of the computations requires more than apply-
ing the original tree-building algorithm to resampled data sets.
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