Concerns with Singular Value Decomposition in R Software

Using singular value decomposition, any second-order tensor is given as

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \tag{1}
\end{equation*}
$$

where \mathbf{U} and \mathbf{V} are the orthogonal tensors, and $\boldsymbol{\Sigma}$ is the diagonal matrix (Eigenvalue matrix). For a symmetric matrix, the orthogonal tensors are the same, i.e., $\mathbf{U}=\mathbf{V}$. There is an issue with the singular value decomposition function (svd) in R-software which is illustrated using the following example.

Example:

The symmetric matrix \mathbf{A} is assumed as

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 4 \tag{2}\\
4 & 1
\end{array}\right]
$$

Upon finding the singular value decomposition of matrix \mathbf{A} using $\operatorname{svd}(\mathbf{A})$ in R software, one arrives at

$$
\begin{align*}
& \mathbf{U}=\left[\begin{array}{cc}
-0.7071068 & -0.7071068 \\
-0.7071068 & 0.7071068
\end{array}\right] \\
& \mathbf{\Sigma}=\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right] \\
& \mathbf{V}=\left[\begin{array}{cc}
-0.7071068 & 0.7071068 \\
-0.7071068 & -0.7071068
\end{array}\right] \tag{3}
\end{align*}
$$

The tensors \mathbf{U} and \mathbf{V} should be the same for a symmetric matrix. However, the tensors (Eq.(3)) for the chosen symmetric matrix given in Eq.(2) are different, and the components of the diagonal matrix are incorrect. As a result of these issues, a difference is observed not only in the exponential of a matrix but also in finding the even power of a matrix. Comparison of the square of the chosen matrix ' \mathbf{A} ' using the direct method and singular value decomposition is as follows

$$
\mathbf{A}^{2}=\left[\begin{array}{cc}
17 & 8 \tag{4}\\
8 & 17
\end{array}\right] \quad \text { Direct Method }
$$

$$
\mathbf{A}^{2}=\left[\begin{array}{cc}
8 & 17 \tag{5}\\
17 & 8
\end{array}\right] \quad \text { SVD }
$$

Observations: Observing the above equations, it is clear that there is a huge difference in the square of matrix obtained using direct method and SVD.

