Improved Data Aggregation and Summary
Statistics in R, with collap and gsu

Sebastian Krantz

February 26, 2019

Abstract

While there already exist a number of different functions and packages in R to aggregate data
and compute summary statistics, none of the available solutions offers a flexible method to aggregate
multivariate (multi-type) datasets in a single computational step. R also lacks a command to compute
summary statistics appropriate to multi-level (panel) data structures, and a simple method to obtain
between-or within-transformed datasets for analytical use. In addition, many aggregation solutions
don’t provide very tidy output, lack automation or flexibility in the syntax and the way inputs can be
passed, or perform slow on large datasets. With collap and gsu I intend to thoroughly fill these gaps
while accommodating existing functionality. Both functions can perform a broad range of aggregation
and summarizing tasks on a wide variety of data objects, while providing the greatest conceivable
flexibility to the user and tidy output. Both functions are built from base R, collap is slightly faster
than aggregate in the default mode. Through an (optional) internal integration with the data.table
package, both functions can also perform extremely fast when it comes to large datasets.

1 Collap

The creation of collap was inspired by the STATA command collapse, but collap is not simply a repro-
duction of collapse for R, but a more advanced, flexible and faster aggregation command that currently
offered in either language. The function is built from base R, and optionally as a wrapper around
data.table, with the key aims of providing an easier user-interface and a greater range of convenience and
functionality without compromizing on speed. Among it’s key innovations is the large flexibility in inputs
and outputs, and a new approach to data aggregation which recognizes that most datasets are comprised
of numeric and categorical variables on which separate operations need to be performed in a multivariate
aggregation task. In its custom mode, collap provides the full functionality of STATA’s collapse e.g.
the possibility to manually assign different columns of a multivariate dataset to different functions and
then aggregating by multiple groups. collap in it’s default mode however features automatic data type
recognition and thus allows the user to simply specify the operation(s) to be performed on numeric and
categorical variables. These features, together with multi-function calls, sensible default settings in the
arguments, flexible and tidy output, and the possibility to harness the full speed of data.table, render
collap an very convenient tool to use on datasets of all shapes and sizes.

Below I briefly list the key features of collap which distinguish it from existing functions such as
aggregate, data.table, plyr, dplyr, doBy::summaryBy, base::by and the apply family. Afterwards I will
briefly outline the syntax of the function and then swiftly turn to demonstrate its functionality. I end by
benchmarking the function directly against aggregate and data.table.

1.1 Key Features

e Multivariate data aggregation with datasets of different types (automatic recognition of numeric
and categorical variables) 4+ aggregation of data.tables, vectors, and numeric or categorical matrices

e Maximum flexibility in the passing of inputs and the format of the output obtained, powered by a
simple and parsimonious syntax

e Fully custom aggregation by passing different aggregator functions to the columns of a dataset

e Possibility to apply multiple aggregator functions to a dataset and obtain the output in a wide- or
long format, or as a list of datasets

e Option to obtain between-transformed data (data that is aggregated by group but expanded to the
original dimensions and row-order)

e Tidy output (preserved names and column order, rows sorted by aggregation groups)

e Sensible default settings in the arguments (mean for numeric columns, mode for categorical columns,
NA’s are removed, NaN’s accruing during aggregation are replaced with NA’s etc..)

e Optional speed improvement with the built-in data.table option

e Full compatibility with data.table: supplying a data.table to collap will toggle internal use of
data.table for aggregation and output as data.table

e Option to parallelize the computation of multiple functions for further speed improvement

1.2 Syntax of collap
Usage

collap(X, by = NULL, FUN = mean, catFUN = Mode, factors = "as.categorical", custom = NULL,
custom.names = TRUE, collapse = TRUE, sort = TRUE, na.rm = TRUE, replace.nan = TRUE,
reshape.long = FALSE, show.statistic = TRUE, as.list = FALSE,
dropcat = FALSE, dropby = FALSE, data.table = FALSE, parallel = FALSE)

Arguments

X A vector, matrix, list, data.frame or data.table to aggregate (anything that can be coerced
to data.frame)

by Columns to aggregate by, either contained in X and indicated using a one-or two sided
formula (two-sided if only certain columns in X are to be aggregated), column indices,
a vector of column names, or a string of comma-separated column names, or externally
supplied in form of a vector, list of vectors or data.frame, with the number of elements/rows
matching that of X. If by’ is left empty, columns are fully aggregated.

FUN Function(s) to apply to numeric columns in X, defaults to the mean. A single function can
be supplied without quotes. Multiple functions can be supplied as a character vector, string
of comma-separated function names, or as a list of functions (preferably named). Ad-hoc
functions can be supplied.

catFUN Function(s) to apply to categorical columns in X, defaults to the Mode. If all elements in a
group defined by ’by’ are distinct, the Mode defaults to the first element. Multiple functions
can be supplied in the same manor as to 'FUN’.

factors Specifies treatment of factor variables. Default is treatment as categorical variables. Alterna-
tively factors can be coerced to numerical variables by spcifying "as.numeric", or the factor
levels can be extracted and coerced to a numerical variable by specifying "as.numeric.fractor"
(internally defined as: as.numeric.factor <- function(x) {as.numeric(levels(x))[x]})

custom Option to supply a custom vector or list of functions whose length must match the number
of columns to be aggregated. Alternatively a named list can be provided with the names
being the comma-separated names of the columns to be aggregated by different functions,
i.e. list("varl,var2,var3" = mean, var4 = median, "var7,var8" = sd).

custom.names Interact the column names with the respective function names in ’custom’.

na.rm Removes missing values from all columns before applying any functions. This is done inter-
nally in collap, thus it is not required for functions in 'FUN’ or ’catFUN’ to have a 'na.rm’
argument.

replace.nan Replaces NaN values with NA values. NaN’s are frequently generated if na.rm = TRUE,

and aggregation takes place over an empty subset.

sort Sort restores the columns back to their original order after aggregation. If sort = FALSE,
the dataset is returned with the 'by’ columns in front, and the other columns following in
the order of computation (first numeric columns and then categorical columns, or columns
in the order they are passed to ’custom’).

collapse

reshape.long

show.statistic

as.list

dropcat

dropby

data.table

parallel

If collapse = FALSE, the aggregated data will be matched with the original data in the ’by’
argument and collap will return a dataset that is aggregated but of the same dimensions and
row-order as the original data, i.e. a between-transformed dataset.

If multiple functions are supplied to either "TFUN’ or ’catFUN’, by default collap returns a
wider dataset. If reshape.long = TRUE, then a long form of the dataset is returned with an
additional column ’Statistic’ indicating the function used for aggregation.

If multiple functions are called and reshape.long = TRUE, show.statistic = FALSE can be
called to omit the ’Statistic’ column and instead make appropriate row.names.

Optionally the output can be requested as a list of vectors or data.frames. There are two
options here: If as.list = "by", then a list will be returned whose elements are the aggregated
output for each group in ’by’. If multiple functions are supplied to either 'FUN’ or ’catFUN’,
calling as.list = "FUN" will return a list with the dataset aggregated by the different func-
tions. as.list = "by" may come at some slight extra computational cost but as.list = "FUN"
does not.

Drop all categorical variables apart from identifiers in by’ (i.e. don’t perform aggregation
on them).

Drop the columns in 'by’ from the final output.

By default collap is built as a wrapper around aggregate.data.frame. Calling this argument
will internally use data.table as workhorse function, yielding significant speed improvements
for large datasets.

If multiple functions are supplied to 'TFUN’ or ’catFUN’, parallel = TRUE will automatically
parallelize computation on k — 1 of the available cores (using the parLapply function from
the parallel package). The argument works together with data.table = TRUE to guarantee
maximum performance on tasks involving large datsets and multiple functions.

Additional arguments supplied to 'FUN’; ’catFUN’ or to aggregate.data.frame in the default
mode.

1.3 Demonstration

To demonstrate collap, I download 4 US macroeconomic time-series from the Federal Reserve Bank of St.
Louis database: The Real Gross Domestic Product (GDPC1), the Civilian Noninstitutional Population
(CNP160V), the Gross Domestic Product: Implicit Price Deflator (GDPDEF), and the Effective Federal
Funds Rate (FEDFUNDS). The output shows that real GDP and it’s deflator are only available at quar-
terly frequancy, whereas population and the interest rate are available as monthly series. Furthermore,
the 'Date’ variable is supplied as a character string.

library (fImport)

data

data
data
data
str(

'data.frame':

#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#

= as.data.frame(fredSeries(c("GDPC1","CNP160V","GDPDEF", "FEDFUNDS"),

from = "1979-01-01"))

$Date = rownames(data); rownames(data) = NULL
$Year = as.numeric(substr(data$Date,1,4))

$Quarter =
data)

$ GDPC1
CNP160V :
GDPDEF
FEDFUNDS :
Date
Year

@B P P P PH P

Quarter :

481
: num

num

. num

num

: chr
: num

int

rep(1:4,100,each=3) [1:nrow(data)]

obs. of 7 variables:

6742 NA NA 6749 NA ...

163516 163726 164027 164162 164459 ...

37.5 NA NA 38.4 NA ...

10.1 10.1 10.1 10 10.2 ...

"1979-01-01" "1979-02-01" "1979-03-01" "1979-04-01"
1979 1979 1979 1979 1979 ...

1112223334 ...

Since these data need to be at the same quarterly frequency to be useful for macroeconomic analysis,
I use collap to aggregate them:

head(data)

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6741.854 163516 37.476 10.07 1979-01-01 1979 1
2 NA 163726 NA 10.06 1979-02-01 1979 1
3 NA 164027 NA 10.09 1979-03-01 1979 1
4 6749.063 164162 38.394 10.01 1979-04-01 1979 2
5 NA 164459 NA 10.24 1979-05-01 1979 2
6 NA 164721 NA 10.29 1979-06-01 1979 2

Collapse data

datac = collap(data, ~ Year + Quarter)

head(datac)

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
2 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2
3 6799.200 165199.7 39.234 10.94667 1979-07-01 1979 3
4 6816.203 166054.7 39.962 13.57667 1979-10-01 1979 4
5 6837.641 166762.3 40.801 15.04667 1980-01-01 1980 1
6 6696.753 167415.7 41.772 12.68667 1980-04-01 1980 2

The output shown provided by collap is exactly the same dataset but now at quarterly frequency.
collap performed this operation by first extracting the "Year" and "Quarter" columns to create groups
to aggregate over, then it removed missing values from the data (as na.rm = TRUE by default) and
applied the mean (FUN default) to the 4 series, and the mode (catFUN default) to the 'Date’ column.
The mode chose the first date in each year and quarter since all dates are distinct. collap then combined
the columns again, put them back into the original order (as sort = TRUE by default), and replaced
NaN’s with NA’s! (as replace.nan = TRUE by default). Having outlined basic working principles, I now
turn to demonstrate some of the flexibility of collap by showing the different ways inputs can be supplied
to the function:

Alternative ways to call the above operation:

datac2 = collap(data,6:7) # using column indices
datac3 = collap(data,c("Year","Quarter")) # a vector of column names
datac4d

collap(data,"Year,Quarter") # a string of comma-separated column names

These three yield identical output to the formula interface
all(identical (datac,datac2),identical(datac,datac3),identical(datac,datac4))

[1] TRUE

One can also supply a vector, list of wvectors or data.frame to the 'by' argument
datacs = collap(datal[-(6:7)],datal[6:7])

here however collap is unable to restore the original column order
head(datac5,3)

Year Quarter GDPC1 CNP160V GDPDEF FEDFUNDS Date
1 1979 1 6741.854 163756.3 37.476 10.07333 1979-01-01
2 1979 2 6749.063 164447.3 38.394 10.18000 1979-04-01
3 1979 3 6799.200 165199.7 39.234 10.94667 1979-07-01

the previous output is identical to any of the former if sort = FLASE
head(collap(data, ~ Year + Quarter, sort = FALSE),3)

Year Quarter GDPC1 CNP160V GDPDEF FEDFUNDS Date
1 1979 1 6741.854 163756.3 37.476 10.07333 1979-01-01
2 1979 2 6749.063 164447.3 38.394 10.18000 1979-04-01
3 1979 3 6799.200 165199.7 39.234 10.94667 1979-07-01

The two-sided formula interface is useful to aggregate only certain columns, i.e. here only real GDP
and it’s deflator:

INaN’s occur when one aggregates over missing values with na.rm = TRUE, i.e. mean(c(NA,NA), narm = TRUE)
gives NaN. This replacement is only done if replace.nan = TRUE. Setting this argument to FALSE gives a slight speed
improvement.

A4 two-sided formula serves to aggregate only a subset of the data
head(collap(data, GDPC1 + GDPDEF ~ Year + Quarter),3)

GDPC1 GDPDEF Year Quarter
1 6741.854 37.476 1979 1
2 6749.063 38.394 1979 2
3 6799.200 39.234 1979 3

With the ’dropcat’ and 'dropby’ arguments, collap offers additional flexibility for certain cases. The
"dropcat’ argument can be used to drop all categorical variables (except for those in ’by’) prior to aggre-
gation. This is particularly handy when considering that many datasets from statistical agencies provide
not only main identifiers, but also some other identifiers and variables providing information about the
dataset such as regional codes, series codes etc. which are often categorical. With ’dropcat’ these variables
can now be dropped, allowing the user to maintain only the identifiers and the aggregated numerical data.
Similarly the ’dropby’ argument allows the user to drop the aggregation identifiers supplied to by’. This
is useful in cases where for example an external aggregation ID is supplied which should not be part of
the resulting dataset, or when a single column is aggregated and the output is desired in form of a vector.
The ’collapse’ argument gives between-transformed data, which can be used to run a between-regression,
or to obtain within-transformed data by subtracting it from the original data.

'dropcat' removes categorical columns (here 'Date'’)
head(collap(data, ~ Year + Quarter, dropcat = TRUE),3)

#i# GDPC1 CNP160V GDPDEF FEDFUNDS Year Quarter
1 6741.854 163756.3 37.476 10.07333 1979 1
2 6749.063 164447.3 38.394 10.18000 1979 2
3 6799.200 165199.7 39.234 10.94667 1979 3

'dropby' omits the 'by' columns from the output, here taking 5-year averages of the data
head(collap(data, round(data$Year/5)*5, dropby = TRUE),3)

#i# GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6818.057 168752.8 44.11150 13.296667 1979-01-01 1980.5 2.5
2 7887.799 178428.7 54.24225 8.175000 1983-01-01 1985.0 2.5
3 9292.875 188779.8 63.44695 6.818667 1988-01-01 1990.0 2.5

This gives a vector of quarterly GDP
head(collap(data, GDPC1 ~ Year + Quarter, dropby = TRUE))

[1] 6741.854 6749.063 6799.200 6816.203 6837.641 6696.753

Setting collapse = FALSE gives between-transformed data, the original row-order ©s restored
head(collap(data, ~ Year + Quarter, collapse = FALSE))

#i# GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
2 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
3 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
4 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2
5 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2
6 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2

When more than one function is called, by default collap outputs a wider dataset, but the order of
columns is still kept as long as sort = TRUEZ. If reshape.long = TRUE and multiple functions are passed
to either '"FUN’ or 'catFUN’, the data are returned in long form and unaffected columns are duplicated.
If multiple functions are supplied to both 'FUN’ and ’catFUN’, the data are always returned in the
wide-form, even if reshape.long = TRUE.

library(dplyr) # dplyr contains the functions 'first' and 'last’

Applying multiple functions to numeric variables
head(collap(data, ~ Year + Quarter,'"mean,length"),3)

2Calling length here serves to count the number of non-missing observations aggregated over to produce each value in
the output table, since na.rm = TRUE by default.

GDPCl1.mean GDPC1.length CNP160V.mean CNP160V.length GDPDEF.mean GDPDEF.length FEDFUNDS.mean

1 6741.854 1 163756.3 3 37.476 1 10.07333
2 6749.063 1 164447.3 3 38.394 1 10.18000
3 6799.200 1 165199.7 3 39.234 1 10.94667
FEDFUNDS.length Date Year Quarter
1 3 1979-01-01 1979 1
2 3 1979-04-01 1979 2
3 3 1979-07-01 1979 3

If sort = FALSE, vartables are sorted in the order of computation
head(collap(data, ~ Year + Quarter,'"mean,length", sort = FALSE),3)

Year Quarter GDPC1.mean CNP160V.mean GDPDEF.mean FEDFUNDS.mean GDPC1.length CNP160V.length

1 1979 1 6741.854 163756.3 37.476 10.07333 1 3
2 1979 2 6749.063 164447.3 38.394 10.18000 1 3
3 1979 3 6799.200 165199.7 39.234 10.94667 1 3
GDPDEF.length FEDFUNDS.length Date

1 1 3 1979-01-01

#H 2 1 3 1979-04-01

3 1 3 1979-07-01

If reshape.long = TRUE, data are returned in a long format, were 'Statistic'

serves as an tdentifier and unaffected columns (here 'Date') are duplicated
head(collap(data, ~ Year + Quarter,'"mean,length", reshape.long = TRUE),3)

Statistic GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 mean 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
2 mean 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2
3 mean 6799.200 165199.7 39.234 10.94667 1979-07-01 1979 3

The same holds true for multiple categorical functions, numeric columns are duplicated
head(collap(data, ~ Year + Quarter, catFUN = "Mode,first,last", reshape.long = TRUE),3)

Statistic GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 Mode 6741.854 163756.3 37.476 10.07333 1979-01-01 1979 1
2 Mode 6749.063 164447.3 38.394 10.18000 1979-04-01 1979 2
3 Mode 6799.200 165199.7 39.234 10.94667 1979-07-01 1979 3

If multiple functions are supplied to 'FUN' and 'catFUN', wide data are always returned
head(collap(data, ~ Year + Quarter,"mean,length","Mode,first,last"),3)

GDPCl1.mean GDPC1.length CNP160V.mean CNP160V.length GDPDEF.mean GDPDEF.length FEDFUNDS.mean

1 6741.854 1 163756.3 3 37.476 1 10.07333
2 6749.063 1 164447.3 3 38.394 1 10.18000
3 6799.200 1 165199.7 3 39.234 1 10.94667
FEDFUNDS.length Date.Mode Date.first Date.last Year Quarter
1 3 1979-01-01 1979-01-01 1979-03-01 1979 1
2 3 1979-04-01 1979-04-01 1979-06-01 1979 2
3 3 1979-07-01 1979-07-01 1979-09-01 1979 3

The code below demonstrates the fully custom mode, which STATA users will find familiar from
collapse. It should be noted that it is not possible to supply a named list of functions to 'custom’ the
way it can be supplied to 'FUN’ or 'catFUN’. Whenever a named list is supplied to ’custom’, collap will
interpret the names as column names and search for them in the dataset.

Fully custom aggregation
head(collap(data, ~ Year + Quarter,
custom = list("GDPC1,GDPDEF" = mean, FEDFUNDS = function(x)length(unique(x)))),3)

#i# GDPC1 GDPDEF FEDFUNDS Year Quarter
1 6741.854 37.476 3 1979 1
2 6749.063 38.394 3 1979 2
3 6799.200 39.234 3 1979 3

Users should note that when a named list %s passed to 'custom', the names will always
be interpreted as column names matching those in the data

Using quotes around functions adds mames, as long as custom.names = TRUE
The same column can also be assigned to multiple functions (here FEDFUNDS):
head(collap(data, ~ Year + Quarter,

custom = list("GDPC1,GDPDEF,FEDFUNDS" = "mean", FEDFUNDS = "median")),3)

GDPC1.mean GDPDEF.mean FEDFUNDS.mean FEDFUNDS.median Year Quarter

1 6741.854 37.476 10.07333 10.07 1979 1
2 6749.063 38.394 10.18000 10.24 1979 2
3 6799.200 39.234 10.94667 10.94 1979 3

Alternatively: Using a vector, list or comma-separated string of functions
of length ncol(X)-length(by)
head(collap(data, ~ Year + Quarter, custom = "mean,median,mean,median,first"),3)

GDPC1.mean CNP160V.median GDPDEF.mean FEDFUNDS.median Date.first Year Quarter

1 6741.854 163726 37.476 10.07 1979-01-01 1979 1
2 6749.063 164459 38.394 10.24 1979-04-01 1979 2
3 6799.200 165198 39.234 10.94 1979-07-01 1979 3

Without the mnames
head(collap(data, ~ Year + Quarter, custom = "mean,median,mean,median,first",
custom.names = FALSE),3)

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6741.854 163726 37.476 10.07 1979-01-01 1979 1
2 6749.063 164459 38.394 10.24 1979-04-01 1979 2
3 6799.200 165198 39.234 10.94 1979-07-01 1979 3

Using a list of functions of length ncol(X)-length(by)
head(collap(data, ~ Year + Quarter,
custom = list(mean,median,mean,function(x)length(unique(x)),first)),3)

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 6741.854 163726 37.476 3 1979-01-01 1979 1
2 6749.063 164459 38.394 3 1979-04-01 1979 2
3 6799.200 165198 39.234 3 1979-07-01 1979 3

Now I provide a taste of uses of collap with different data objects. Some of these examples are a bit
unconventional, especially since gsu is better adapted to compute summary statistics, but they serve to
demonstrate the flexibility of collap.

Leaving 'by' unpectified fully aggregates the data
collap(data)

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 12180.56 209992.2 76.52082 4.890374 1979-01-01 1998.543 2.496881

Collap works with matrices
round(collap(as.matrix(datal[-5])),2) # This outputs a wector

GDPC1 CNP160V GDPDEF FEDFUNDS Year Quarter
12180.56 209992.23 76.52 4.89 1998.54 2.50

head(collap(as.matrix(datal[-5]), ~ Year + Quarter),3) # This outputs a matric

GDPC1 CNP160V GDPDEF FEDFUNDS Year Quarter
[1,] 6741.854 163756.3 37.476 10.07333 1979 1
[2,] 6749.063 164447.3 38.394 10.18000 1979 2
[3,] 6799.200 165199.7 39.234 10.94667 1979 3

Collap also works with vectors, here same as calling sd(data$GDPC1, na.rm = TRUE)
collap(data$GDPC1, fun = sd) # This gives a scalar

data.GDPC1
#Hit 12180.56

Using two vectors
collap(data$GDPC1, data$Quarter, "mean,min,max")

data.Quarter data.GDPC1.mean data.GDPC1.min data.GDPC1.max

1 1 12098.39 6741.854 18323.96
2 2 12186.08 6696.753 18511.58
3 3 12263.02 6688.794 18664 .97
4 4 12174.59 6802.497 18223.76
Using a list. If the list is not named, column names will be "Group.1", "Group.2"

head(collap(data$GDPC1, list(Year = data$Year, Quarter = data$Quarter)),3)

Year Quarter data.GDPC1

1 1979 1 6741.854
2 1979 2 6749.063
3 1979 3 6799.200

This computes the time-correlation for each variable, averaged across the 4 quarters
collap(collap(collap(data,"Year,Quarter"),"Quarter",function(x)cor(x,seq(x))))

GDPC1 CNP160V GDPDEF FEDFUNDS Date Year Quarter
1 0.9950782 0.9983412 0.9978126 -0.8705986 1979-01-01 1 2.5

As noted before, if a data.table is passed to collap, collap will automatically resort to the fast data.table
method for aggregation (same as setting data.table = TRUE) and also output a data.table. If the user sets
data.table = TRUE, and the input is not a data.table, collap will internally use data.table for aggregation,
but output an object of the original class. The code below briefly demonstrates the as.list argument,
which can come in handy for certain tasks, if output in a list formal is preferred.

If multiple functions are called, as.list = "FUN" returns a separate dataset for each
str(collap(data, ~Year+Quarter, "mean,length", as.list = "FUN"))

List of 2

¢ mean :'data.frame': 161 obs. of 7 variables:

..$ GDPC1 : num [1:161] 6742 6749 6799 6816 6838 ...

..$ CNP160V : num [1:161] 163756 164447 165200 166055 166762 ...

..$ GDPDEF : num [1:161] 37.5 38.4 39.2 40 40.8 ...

..$ FEDFUNDS: num [1:161] 10.1 10.2 10.9 13.6 15 ...

..$ Date : chr [1:161] "1979-01-01" "1979-04-01" "1979-07-01" "1979-10-01"
##t ..$ Year : num [1:161] 1979 1979 1979 1979 1980 ...

#it ..$ Quarter : int [1:161] 1 234123412 ...

§ length:'data.frame': 161 obs. of 7 variables:

..$ GDPC1 :dint [1:161] 1111111111 ...

..$ CNP160V : int [1:161] 3 3 33333333 ...

..$ GDPDEF : int [1:161] 1111111111 ...

..$ FEDFUNDS: int [1:161] 3 3 33333333 ...

..$ Date : chr [1:161] "1979-01-01" "1979-04-01" "1979-07-01" "1979-10-01"
..$ Year : num [1:161] 1979 1979 1979 1979 1980 ...

Hit ..$ Quarter : int [1:161] 1 234123412 ...

as.list = "by" provides a list of datasets for each 'by'-group

head(collap(data,~“Year+Quarter, "length,mean,sd,min,max", as.list = "by", reshape.long = T),2)
$71979.1°

Statistic GDPC1 CNP160V GDPDEF FEDFUNDS Date
1 length 1.000 3.0000 1.000 3.00000000 1979-01-01
162 mean 6741.854 163756.3333 37.476 10.07333333 1979-01-01
323 sd NA 256.8469 NA 0.01527525 1979-01-01
484 min 6741.854 163516.0000 37.476 10.06000000 1979-01-01
645 max 6741.854 164027.0000 37.476 10.09000000 1979-01-01
##

$71979.2°

Statistic GDPC1 CNP160V GDPDEF FEDFUNDS Date
2 length 1.000 3.0000 1.000 3.0000000 1979-04-01
163 mean 6749.063 164447.3333 38.394 10.1800000 1979-04-01
324 sd NA 279.6826 NA 0.1493318 1979-04-01

485 min 6749.063 164162.0000 38.394 10.0100000 1979-04-01
646 max 6749.063 164721.0000 38.394 10.2900000 1979-04-01

1.4 Benchmark

I finally examine the performance of collap, in its default mode and with the help of the built-in data.table
option, and compare it to aggregate.data.frame and data.table. 1 let aggregate.data.frame and data.table
perform exactly the same computational steps as collap, although I do not bring the output of these
functions in the same form (i.e. no column binding and sorting, and no replacement of NaN’s with NA’s).
The benchmark comes in three steps: A microbenchmark on the dataset considered so far, a benchmark
with a long dataset®, and a benchmark with a wide dataset.

library(microbenchmark)
library(data.table)
dim(data)

[1] 481 7

print (microbenchmark(# 100 replications microbenchmark

C = Collap | AG = Aggregate | CDT = Collap + Data Table | DT = Data Table

C = collap(data, ~ Year + Quarter),

AG ={aggregate.data.frame(datal[1:4], data[6:7], FUN = mean, na.rm = TRUE)
aggregate.data.frame(data[5], data[6:7], FUN = Mode, na.rm = TRUE)},

CDT=collap(data, ~ Year + Quarter, data.table = TRUE),

DT ={setDT(data) [,lapply(.SD,mean,na.rm=TRUE), keyby = "Year,Quarter", .SDcols=1:4]
setDT (data) [,1apply(.SD,Mode,na.rm=TRUE), keyby = "Year,Quarter", .SDcols=5]
setDF (data)}), digits = 3)

Unit: milliseconds

expr min 1g mean median uq max neval cld
C 11.48 11.88 12.70 12.13 13.25 17.0 100 ¢
AG 12.83 13.32 13.93 13.55 14.53 16.5 100 d
CDT 5.34 5.77 6.19 6.01 6.26 11.3 100 b
DT 3.91 4.12 4.64 4.33 4.60 11.9 100 a

The microbenchmark shows that in the default mode collap performs slightly faster than aggre-
gate.data.frame, and is about 2 milliseconds slower than data.table in the data.table mode.

Generating long data:
for (i in 1:13) data = rbind(data,data)
dim(data)

[1] 3940352 7

print (microbenchmark(# 10 replications benchmark

C = Collap | AG = Aggregate | CDT = Collap + Data Table | DT = Data Table

C = collap(data, ~ Year + Quarter),

AG ={aggregate.data.frame(data[1:4], data[6:7], FUN = mean, na.rm = TRUE)

aggregate.data.frame(data[5], data[6:7], FUN = Mode, na.rm = TRUE)},

CDT=collap(data, ~ Year + Quarter, data.table = TRUE),

DT ={setDT(data)[,lapply(.SD,mean,na.rm=TRUE), keyby = "Year,Quarter", .SDcols=1:4]
setDT (data) [,1apply(.SD,Mode,na.rm=TRUE), keyby = "Year,Quarter", .SDcols=5]
setDF (data)}, times = 10), digits = 3)

Unit: milliseconds

expr min 1qg mean median uq max neval cld
C 13950 14050 14588 14489 15091 15445 10 b
AG 14778 14979 15283 15142 15536 16306 10 ¢
CDT 799 801 901 864 982 1119 10 a
DT 754 768 814 801 861 931 10 a

The benchmark with the long dataset of approx. 4 million observations shows that the built-in
data.table option endows collap with a significant edge over aggregate.data.frame (0.9 seconds vs. 18

30Obtained by duplicating and row-binding the dataset at hand.

seconds for this task), and is only neglegibly slower than data.table itself. For the wide data benchmark
I use the World Bank Development Indicators, a dataset providing around 1450 development indicators
following 264 geographical entities grouped into 7 World Regions over 57 years. Below I aggregate this
dataset by region and year:

The World Bank Development Indicators
dim(WDI)

[1] 15048 1457

ind = match(c("region","year") ,names(WDI)) # Columns to aggregate by
nu = setdiff (which(sapply(WDI,is.numeric)),ind) # Numeric variables
nnu = setdiff(seq(ncol(WDI)),c(ind,nu)) # categorical variables

print (microbenchmark(# 10 replications benchmark

C = Collap | AG = Aggregate | CDT = Collap + Data Table | DT = Data Table

C = collap(WDI, ind),

AG ={aggregate.data.frame(WDI[nu], WDI[ind], FUN = mean, na.rm = TRUE)
aggregate.data.frame (WDI[nnu], WDI[ind], FUN = Mode, na.rm = TRUE)},

CDT=collap(WDI, ind, data.table = TRUE),

DT ={setDT(WDI) [,lapply(.SD,mean,na.rm=TRUE), keyby = "region,year", .SDcols=nu]
setDT (WDI) [,lapply(.SD,Mode,na.rm=TRUE), keyby = "region,year", .SDcols=nnu]
setDF(WDI)}, times = 10), digits = 3)

Unit: milliseconds

expr min 1lqg mean median uq max neval cld
C 10651 10810 11287 11357 11681 11866 10 b
AG 10454 10570 11028 10832 11640 11889 10 b
CDT 563 571 594 576 603 724 10 a
DT 549 567 592 582 606 695 10 a

The results again are vary similar, collap here is about the same speed as aggregate.data.frame and
also just as fast as data.table - a blazing 0.6 seconds for this dataset - revealing the efficient programming
behind it and rendering it a very useful tool even for advanced R users working on large datasets or
data.tables.

Amongst others I have not demonstrated the parallel option. Generally speaking the speed improve-
ment it brings is modest on two-core machines, but when several functions are applied and the dataset
is long and large, collap with the data.table and parallel options enabled can outperform data.table.

1.5 Conclusion

collap represents a new data-aggregation tool that offers a significant combination of extended function-
ality, performance and convenience that was previously unavailable in R in this area. Based on my own
use I am convinced that this command will enhance the workflow and become a personal favourite of
many data analysts.

10

2 Qsu

Q@su, which stands shorthand for quick-summary, is an advanced and fast summary command for cross-
sectional and multilevel (panel) data. It’s key feature is that it not only provides arbitrary summary
statistics by group, but also within-and between groups, and also within and between subgroups defined
by a group. g¢su also provides an easy and fast method to obtain within-transformed data, a feature
many will find handy. Again below I briefly list the key advanteges of gsu over existing functions such
as base::summary, base::by, psych::describe, psych::describeBy, FSA::Summarize, Rmisc::summarySE,
doby::summaryBy, pastecs::stat.desc, Hmisc::describe, stats::xtabs, fBasic::basicStats, the apply family
etc., then I will briefly outline the syntax of the function and swiftly turn to demonstrate its functionality.

2.1 Key Features

e Parsimonious and speedy default summary (output familiar to STATA users from summarize).
Users can also request an extended set of statistics including skewness and kurtosis, and specify an
arbitrary number of quantiles to be computed

e Multilevel (panel)-data summary (i.e. overall, between entities and within entities summary) (fami-
lar from ztsummarize STATA command), the zt-option

e Summary by Groups, the by-option, can be combined with the zt-option for subgroups

e Fully customizable set of summary statistics, works with the zt- and by-options (i.e. any function
or set of functions that takes a data-vector as input and returns a vector of statistics can be used
with gsu)

e Option to apply a transformation like scaling or log to the numeric columns of a dataset, transfor-
mations can be taken overall or by group

e Ability to display variable labels in the summary, i.e. for STATA, SPSS or SAS datasets imported
into R using the haven package, or downloaded using WDI or other API’s that supply labels

e Maximum flexibility in input and output specification
e Tidy output in a convenient format

e Option to output the transformed data used to compute the summary

2.2 Syntax of gsu
Usage

gsu(X, by = NULL, xt = NULL, FUN = NULL, Q = FALSE, Ext = FALSE, trans = NULL, trans.by = FALSE,
ndigits = 2, na.rm = TRUE, pretty = FALSE, labels = FALSE, factors = "as.categorical",
combine.by = FALSE, combine.xt = TRUE, within.add.mean = TRUE, show.trans = TRUE,
data.out = FALSE, data.out.drop = FALSE, xt.data.table = FALSE)

By default gsu computes the following statistics: N = Number of Observations, D = Number of
distinct values, Mean, SD = Standard Deviation, Min = Minimum value, Max = Maximum value. The
latter four are only computed for numerical variables. If one or multiple grouping variable is supplied to
at, by default gsu will show classical (overall) statistics, but also compute statistics between and within
groups. The most common form of multilevel data is longitudinal data which follows individuals or
entities ¢ over time ¢ (but ¢ could just be another grouping variable). Denote x;; the original data, then
X; is the between-transformed data, where the time-mean for each individual was taken, and x;; —X; +X is
the within-transformed (demeaned) data (the overall mean X is added back to make results comparable).
Providing summary statistics of X; and x;; — X; + X in addition to x;; has the advantage that it uncoveres
the structure of the longitudinal data in terms of the number of individuals and the average number of
time-periods. Of particular interest in this summary is the standard deviation, which now decomposes
overall variability into variability between individual averages, and variability within individuals over
time. This variance decomposition, amongst other things, allows one to see which variables are time
varying and which time-invariant individual characteristics, and it allows the researcher to gauge what
proportion of the variance in model variables would be lost by employing a fixed effects estimator. If a
multilevel dataset is characterized by more than two identifiers, i.e. x;;, one can supply, j, 4, ¢, ij, it

11

or jt to the zt option. One could also supply for example j to the by option, and i to the zt option. In
that setup within and between transformed statistics over ¢ will be computed separately for each group
defined by j. For example if j is a region, ¢ district and ¢ a year, then this would show the variation
between districts and over time for each region.

Arguments

X

by

xt

FUN

Ext

trans

trans.by

ndigits

na.rm

pretty

labels

factors

combine.by

combine.xt

within.add.mean

A vector, matrix, data.frame or data.table to summarize (anything that can be coerced to
data.frame)

Groups to summarize by, either contained in X and indicated using a one-or two sided
formula (two-sided if only certain columns in X are to be aggregated), column indices,
a vector of column names, or a string of comma-separated column names, or externally
supplied in form of a vector, list of vectors or data.frame, with the number of elements/rows
matching that of X.

Groups to compute statistics overall, between and within. The same flexibility as with the
by’ argument applies. If used together with ’by’, a subgroup of ’by’ should be used. If a
two-sided formula is used together with ’by’, it does not matter whether the LHS variables
are specified in the ’by’, 'xt’ or in both arguments.

Custom function(s) to apply to all columns in X apart from columns in the ’by’ or 'xt’
arguments. Functions must take a vector and return a vector of statistics. A single function
can be supplied without quotes. Multiple functions can be supplied as a character vector,
string of comma-separated function names, or as a named list of functions. Ad-hoc functions
can be supplied. 'FUN’ when it is used overrides the default set of statistics and the 'Q’ and
’Ext’ arguments.

Number of quantiles to compute.
Request an Extended set of statistics including the median, the skewness and the kurtosis

A transformation function applied to the numeric columns of the data (for example log, scale,
diff or growth rates)

If the ’by’ option is used, 'trans’ can be applied to groups separately (i.e. one could use it
to obtain growth rates for multiple countries in a long country-time x variables dataset)

Number of digits to show. If set to NULL, all digits will be shown.

Internally removes missing values before applying any functions or transformations. It is not
required for functions to have a 'na.rm’ argument.

Returns result as a character matrix where trailing zeros are eliminated and large numbers
are written in standard (as opposed to scientific) notation.

Show variable labels next to statistics. If labels = TRUE, X must be a data.frame with
variable labels stored as attributes [attr(X$varl,"label")<-"labell"| etc. Alternatively, a
character vector of labels of length ncol(X) can be passed to the labels argument.

Specifies the treatment of factor variables. Default is treatment as categorical vari-
ables. Alternatively factors can be coerced to numerical variables by spcifying
"as.numeric", or the factor levels can be extracted and coerced to a numerical variable
by specifying "as.numeric.fractor" (internally defined as: as.numeric.factor <- function(x)
{as.numeric(levels(x))[x]})

If the ’by’ option is used, combine.by = TRUE gives a compact output instead of a list.

If the 'xt’ option is used combine.xt = FALSE returns a list with overall, between group and
within group statistics.

By default, within-group statistics are computed as x;; — X; + X. If within.add.mean =
FALSE, The within-transformed dataset is obtained as x;; — X;, which is a more classical
within-transformation used i.e. for fixed-effects regression.

12

data.out Output transformed data used to compute the summary. If the 'xt’ option is used, the output
will be a named list of three datasets: An overall dataset (= the original dataset if trans =
NULL), an aggregated dataset for the between-statistics, and a within-transformed dataset.
All datasets come with the original column order, the aggregated dataset is sorted by the
xt’ identifiers, and the within-transformed dataset has the same row-order as the original
dataset. In the aggregated dataset categorical variables were aggregated using the mode,
while in the within-transformed dataset categorical variables are unaffected /untransformed.

data.out.drop Drop all identifiers supplied to by’ or 'xt’ before returning the dataset.

xt.data.table If the 'xt’ option is used, gsu internally utilizes collap to aggregate the data and compute the
within-transformed dataset. If xt.data.table = TRUE, collap will internally use data.table,
yielding a much faster computation on large datasets.

2.3 Demonstration

To demonstrate ¢su, I take a classic example of multilevel data, and download 3 series from the World
Bank Development Indicators database: The GDP per capita in constant 2010 USS$, the life expectancy
at birth in years and the GINI index. Following the newest update the WDI package also downloads
the labels for these series and stores them in a similar way to the haven library when importing STATA,
SPSS or SAS files that typically contain labels.

library(WDI)

data = WDI(indicator = c('NY.GDP.PCAP.KD','SP.DYN.LEOO.IN','SI.POV.GINI'), extra = TRUE)
data = data[c(2,8,12,3:6)]; names(data)[5:7] = c("PCGDP","LIFEEX","GINI")

str(data)

'data.frame': 15576 obs. of 7 variables:
§$ country: chr "Arab World" "Arab World" "Arab World" "Arab World"

§ region : Factor w/ 8 levels "Aggregates","East Asia & Pacific",..: 1111111111 ...
¢ income : Factor w/ 5 levels "Aggregates","High income",..: 1 111111111

§$ year : int 2008 2012 2010 2011 1974 1975 2009 1977 1978 1979 ...

$ PCGDP : atomic 5900 6248 5918 5991 NA ...

..- attr(x, "label")= chr "GDP per capita (constant 2010 US$)"

¢ LIFEEX : atomic 69.6 70.4 70 70.2 54.8 ...

..- attr(x, "label")= chr "Life expectancy at birth, total (years)"

$ GINI : atomic NA NA NA NA NA NA NA NA NA NA ...

Hit ..- attr(x, "label")= chr "GINI index (World Bank estimate)"

In the default mode, gsu provides a simple set of summary statistics in an easily readable format. "D’
denots the number of distinct values, showing that the dataset tracks 264 countries and regional entities
over 59 years, 1960-2018. The data-coverage on the GINI index is very low. Down below the 'pretty’
argument is set to eliminate trailing zeros and replaces NA’s with ’-’, the labels argument can be used
to display variable labels if provided, and specifying factors = as.numeric coerces factor variables (here
region and income) to numeric before summarizing them.

gsu(data)

#i# N D Mean SD Min Max
country 15576 264 NA NA NA NA
region 15399 8 NA NA NA NA
income 15399 5 NA NA NA NA

year 15576 59 1989.00 17.03 1960.00 2018.00
PCGDP 11358 11248 10632.06 17053.84 131.65 191586.64
LIFEEX 13747 12555 63.54 11.16 18.91 85.42
GINI 1356 363 39.40 9.68 16.20 65.80

gsu(data, labels = TRUE, pretty = TRUE, factors = as.numeric)

#Hi# N D Mean SD Min Max Label
country 15576 264 = - - - <NA>
region 15399 8 3.92 2.38 1 8 <NA>

13

#it
#i#
#it
#i#
#Hi#

income 15399

year 15576
PCGDP 11358
LIFEEX 13747
GINI 1356

5 2.96 1.43 1 5 <NA>

59 1989 17.03 1960 2018 <NA>
11248 10632.06 17053.84 131.65 191586.64 GDP per capita (constant 2010 US$)
12555 63.54 11.16 18.91 85.42 Life expectancy at birth, total (years)
363 39.4 9.68 16.2 65.8 GINI index (World Bank estimate)

The quantile argument ’'Q’ takes away 'Min’ and 'Max’ from the summary and shows the specified
number of quantiles. If an extended set of statistics is requested by setting Ext = TRUE, the median,
skewness and kurtosis are added to the summary. These statistics are internally defined and need not
be loaded from the moments library. Of course ’Q’ and ’Ext’ can be used jointly as the third example
shows.

Compute 4 quantiles
gsu(data, Q = 4, pretty = TRUE, factors = as.numeric)

##
Hi#t
#it
#i#
#it
#it
##
#it

N
country 15576
region 15399
income 15399
year 15576
PCGDP 11358
LIFEEX 13747
GINI 1356

D Mean SD 0% 25%
264 = = = =

8 3.92 2.38 1 2

5 2.96 1.43 1 2

59 1989 17.03 1960 1974
11248 10632.06 17053.84 131.65 1190.32
12555 63.54 11.16 18.91 55.51
363 39.4 9.68 16.2 31.7

An extended set of statistics

gsu(data, Ext = TRUE, pretty = TRUE, factors

#it
#it
##
#it
#it
#i#
#it
#i#

N
country 15576
region 15399
income 15399
year 15576
PCGDP 11358
LIFEEX 13747
GINI 1356

D Mean Median
264 - -
8 3.92 3 2.
5 2.96 3 1.
59 1989 1989 17.

11248 10632.06 3455.63 17053.
12555 63.54 66.32 11.
363 39.4 37.4 O

50% 75% 100%

3 5 8

3 4 5

1989 2004 2018
3455.63 12217.94 191586.64
66.32 72 85.42
37.4 46.8 65.8

as.numeric)

SD Min
38 1
43 1
03 1960
84 131.65
16 18.91
68 16.2

A very rich summary, adjusting the number of digits
gsu(data, Q = 8, Ext = TRUE, pretty = TRUE, factors = as

#it
#i#
#it
#i#t
#Hi#
#it
#it
#Hi#

remove aggregate political entities,

N
country 15576
region 15399
income 15399
year 15576
PCGDP 11358
LIFEEX 13747
GINI 1356

D Mean SD 0% 12.5%
264 = = = =

8 4 2 1 1

5 3 1 1 1

59 1989 17 1960 1967
11248 10632 17054 132 603
12555 64 11 19 49
363 39 10 16 28

25% 37.5%
2 3

2 2
1974 1982
1190 2017
56 61
32 34

Max Skew Kurt

8 0.61 2.14

5 0.16 1.63

2018 0 1.8
191586.64 3.26 18.8
85.42 -0.61 2.58
65.8 0.46 2.29

.numeric, ndigits = 0)

507% 62.5% 75% 87.5% 100% Skew Kurt
3 4 5 8 8 1 2

3 4 4 5 5 0 2
1989 1996 2004 2011 2018 0 2
3456 5948 12218 27913 191587 3 19
66 70 72 75 85 -1 3
37 42 47 53 66 0 2

The functionality offered by the ’by’ argument is pretty standard, apart from the greater range of
possible input formats that can be supplied, just as for collap*. The ’combine.by’ argument provides a
handy extension to obtain the output in a more convenient format.

data = subset(data, region!="Aggregates") %>} droplevels

The by argument

gsu(data, PCGDP + LIFEEX + GINI ~ income)

#i#
#Hi#
#it
#i#
it
#it
#i#

"7>1" is from the dplyr package

income: High income

N D Mean SD Min Max
PCGDP 3038 3038 28974.73 22910.72 944.29 191586.64
LIFEEX 3682 3459 73.22 5.51 42.67 85.42
GINI 478 205 34.32 7.86 21.00 58.90
income: Low income

41 already demonstrated the flexibility in inputs with collap and won’t repear this demonstration here.

14

N D Mean SD Min Max

PCGDP 1405 1405 596.80 308.21 131.65 1506.30

LIFEEX 1881 1819 49.62 8.89 27.61 74.43

GINI 109 89 41.47 6.79 28.90 65.80

Bl oo e
income: Lower middle income

N D Mean SD Min Max

PCGDP 2120 2120 1583.37 890.74 150.22 4662.88

LIFEEX 2628 2542 58.56 9.39 18.91 76.25

GINI 330 209 40.07 9.36 24.00 63.20

Bl oo
income: Upper middle income

N D Mean SD Min Max

PCGDP 2432 2432 4849.75 2959.23 131.96 20333.94

LIFEEX 2877 2742 65.97 7.65 36.74 79.83

GINI 439 257 43.91 9.75 16.20 64.80

by + combine.by

head(gqsu(data,

#i#
#Hi#
#it
#i#
#Hi#
#it
#i#

East Asia &
East Asia &
East Asia &

PCGDP + LIFEEX +

Pacific.PCGDP
Pacific.LIFEEX
Pacific.GINI

Europe & Central Asia.PCGDP
Europe & Central Asia.LIFEEX
Europe & Central Asia.GINI

1318
18.
27.

367.
45.

Min
96
91
80
05
37

GINI ~ region, combine.by = TRUE))
N D Mean SD

1391 1391 10337.05 14094.83

1717 1683 65.65 10.12
92 74 38.51 5.37

2084 2084 25664.81 26181.67

2886 2749 71.93 5.46

588 177 31.90 4.74

16.

20

Max
72183.30
84.28
55.40
191586.64
85.42
48.40

One feature of gsu is that it always seeks to provide output in a convenient format, for example if
a single function is used to summarize multiple variables by some group, the output comes in a matrix
format similar to the output collap offers. If multiple functions are provided, the statistics form the
columns and the variables and groups are interacted in the row-names, as in the example above. In that
case a wide-format can only be obtained by employing collap itself. If multiple groups are used together
with ’combine.by’ they are also interacted to provide output a long format.

Checking the data availability by couniry
head(gsu(data, PCGDP + LIFEEX + GINI ~ country, FUN = length, combine.by = TRUE),3)

##

Afghanistan
Albania

Algeria

PCGDP LIFEEX GIN
16 57
38 57
58 57

I
0
5
3

An extention of this format could be achieved with collap
head(collap(data, PCGDP + LIFEEX + GINI ~ country, FUN = "length,mean", sort = FALSE),3)

#i# country PCGDP.length LIFEEX.length GINI.length PCGDP.mean LIFEEX.mean GINI.mean
1 Afghanistan 16 57 0 482.1631 47.88216 NA
2 Albania 38 B 5 2710.1591 71.34056 29.66000
3 Algeria 58 57 3 3474.3201 62.72084 34.36667

Inequality by region and income level

head(gsu(data, GINI

length
East Asia & Pacific.High income g
East Asia & Pacific.Lower middle income 37
East Asia & Pacific.Upper middle income 42
Europe & Central Asia.High income 343
Europe & Central Asia.Low income 6
Europe & Central Asia.Lower middle income 93

Only by income level,

mean

32.
36.
42.
30.
32.
32.

80
21
30
83

70

this time the output is a vector

13 1.

sd

head(gqsu(data, GINI ~ income, FUN = mean, combine.by = TRUE))

#it
#it

High income

34.32

Low income Lower middle income

41.47

15

40.

07

~ region + income, FUN = "length,mean,sd", combine.by = TRUE))

Upper middle income

43.91

Of course gsu also works with other summary commands, such as base::summary or the quantile
function.

Using base::summary

head(qsu(data, PCGDP + LIFEEX + GINI ~ region, FUN = summary, combine.by = TRUE))

Min. 1st Qu. Median Mean 3rd Qu. Max.
East Asia & Pacific.PCGDP 131.96 1600.61 2928.13 10337.05 14574.99 72183.30
East Asia & Pacific.LIFEEX 18.91 59.89 66.92 65.65 72.59 84.28
East Asia & Pacific.GINI 27.80 34.60 37.55 38.51 42.25 55.40
Europe & Central Asia.PCGDP 367.05 5668.88 18993.11 25664.81 36343.96 191586.64
Europe & Central Asia.LIFEEX 45.37 69.01 71.59 71.93 75.70 85.42
Europe & Central Asia.GINI 16.20 28.10 31.65 31.90 35.23 48.40

The biggest innovation of gsu is of course the ’xt’ argument, which leads gsu to output three sets
of statistics for each variable: The standard overall sample statistics, the between-country statistics and
the within-country statistics. For the within-summary not the number of observations, but the average
number of time-periods T' = Noyerall/ Nbetween Per individual entity is shown. The three identifiers region,
income and year form a balanced panel, each tracking 216 entities over 59 years. If the panel is balanced,
then the overall, between and within-entitiy means are equal, while if the panel is unbalanced only the
overall and within entities means are equal®. The standard deviations show that region and income are
time-invariant and year is country-invariant. The "Trans’ column can in the summary can be removed by
calling show.trans = FALSE. The summary of the three variables below shows that for GDP per capita
and life expectancy we have data on around 205 countries with on average around 50 years of data, while
the GINI index is only recorded in 161 countries with 8 years of data on average. These variables are
not balanced yielding a between-mean slightly different from the overall mean. The standard deviations
show that all three variables elicit a significantly larger amount of variation between countries than
within-countries/over time.

The zt argument, here showing only the identifiers

head(gsu(data, xt = ~ country, factors = as.numeric),9)

Trans N/T D Mean SD Min Max
region overall 12744 7 3.52 2.17 1.00 7.00
region.B between 216 7 3.52 2.17 1.00 7.00
region.W within 59 1 3.52 0.00 3R52) 3N52)
income overall 12744 4 2.37 1.22 1.00 4.00
income.B between 216 4 2.37 1.22 1.00 4.00
income.W within 59 1 2.37 0.00 2.37 2.37
year overall 12744 59 1989.00 17.03 1960.00 2018.00
year.B between 216 1 1989.00 0.00 1989.00 1989.00
year.W within 59 59 1989.00 17.03 1960.00 2018.00

A more compact view, showing the three wvariables
gsu(data, xt = PCGDP + LIFEEX + GINI ~ country, show.trans = FALSE, pretty = TRUE, ndigits = 1)

#Hi# N/T D Mean SD Min Max
PCGDP 8995 8995 11563.7 18348.4 131.6 191586.6
PCGDP.B 203 203 12488.9 19628.4 2565.4 141165.1
PCGDP.W 44 8993 11563.7 6335 -30529.1 75348.1
LIFEEX 11068 10048 63.8 11.4 18.9 85.4
LIFEEX.B 207 207 64.5 10 39.3 85.4
LIFEEX.W 53 10996 63.8 5.8 33.5 83.9
GINI 1356 363 39.4 9.7 16.2 65.8
GINI.B 161 160 39.6 8.4 23.4 61.7
GINI.W 8 1130 39.4 3 24 54.8

Analogous to the 'by’ argument, the 'xt’ argument also has an associated ’combine.xt’ argument which
is TRUE by default in order to yield this compact format. If combine.xt = FALSE, gsu will output a list
with separate overall, between and within statistics.

5This is so by definition since the overall mean is added back to the within-transformed data. If within.add.mean =
FALSE, the within mean will be 0 for all variables.

16

xt without combine.xt: Here showing only the within-country summary
gsu(data, xt = PCGDP + LIFEEX + GINI ~ country, combine.xt = FALSE)$within

#H T D Mean SD Min Max
PCGDP 44.31 8993 11563.65 6334.95 -30529.09 75348.07
LIFEEX 53.47 10996 63.84 5.83 33.47 83.86
GINI 8.42 1130 39.40 3.04 23.96 54.80

If only a single function is supplied, gsu again gives the output in a more convenient format, allowing
us to compare the variation of the three variables between countries and over time directly. Similarly
to collap, if the function name is provided in quotes, it is interacted with the column names. Now
one problem in comparing the variability of GDP per capita, life expectancy and inequality of different
countries is that these variables come at different scales. The ’'trans’ argument can therefore be used to
scale the data, which will set the overall standard deviations of all variables to 1. It is now evident that
the greatest variation between countries is in terms of GDP per capita, while the greatest development
within countries was in terms of life expectancy. Overall, the GINI coefficient shows the lowest amount
of variation between and within countries.

Only examining the SD
gsu(data, xt = PCGDP + LIFEEX + GINI ~ country, FUN = "sd")

overall.sd between.sd within.sd
PCGDP 18348.41 19628.37 6334.95
LIFEEX 11.45 10.02 5.83
GINI 9.68 8.37 3.04

Putting this on a standardized scale
gsu(data, xt = PCGDP + LIFEEX + GINI ~ country, FUN = "sd", trans = scale)

overall.sd between.sd within.sd
PCGDP 1 1.07 0.35
LIFEEX 1 0.88 0.51
GINI 1 0.86 0.31

Using now also the 'by’ argument, the variations of the three variables can be explored for the 7 World
Regions individually®. The statistics show that the greatest within-country changes in GDP per capita
were in North America, the greatest changes in life expectancy were in South Asia, and the greatest
changes in inequality were in Africa. The relative variation between and within countries for each region
can be examined through setting trans.by = TRUE, which will apply the scaling to each region separately.

Decomposing variation in inequality between and within couniries by region
gsu(data, PCGDP + LIFEEX + GINI ~ region, ~ country, FUN = "sd", combine.by = TRUE, trans = scale)

overall.sd between.sd within.sd
East Asia & Pacific.PCGDP 0.77 0.67 0.35
East Asia & Pacific.LIFEEX 0.88 0.67 0.57
East Asia & Pacific.GINI 0.55 0.48 0.24
Europe & Central Asia.PCGDP 1.43 1.54 0.57
Europe & Central Asia.LIFEEX 0.48 0.41 0.30
Europe & Central Asia.GINI 0.49 0.43 0.25
Latin America & Caribbean .PCGDP 0.37 0.42 0.13
Latin America & Caribbean .LIFEEX 0.64 0.49 0.46
Latin America & Caribbean .GINI 0.55 0.53 0.36
Middle East & North Africa.PCGDP 1.00 1.08 0.34
Middle East & North Africa.LIFEEX 0.83 0.53 0.66
Middle East & North Africa.GINI 0.53 0.48 0.23
North America.PCGDP 1.00 0.81 0.75
North America.LIFEEX 0.30 0.15 0.28
North America.GINI 0.41 0.51 0.17
South Asia.PCGDP 0.09 0.11 0.03
South Asia.LIFEEX 0.97 0.54 0.83
South Asia.GINI 0.45 0.37 0.27
Sub-Saharan Africa .PCGDP 0.14 0.12 0.07
Sub-Saharan Africa .LIFEEX 0.75 0.54 0.54
Sub-Saharan Africa .GINI 0.86 0.74 0.46

61t does not matter here whether the three variables are indicated on the LHS of the formulas passed to ’by’ or to xt’.

17

Scaling by region

gsu(data, PCGDP + LIFEEX + GINI ~ region, ~ country, FUN = "sd", combine.by = TRUE,

trans = scale, trans.by = TRUE)

overall.sd between.sd within.
East Asia & Pacific.PCGDP 1 0.87 0
East Asia & Pacific.LIFEEX 1 0.76 0
East Asia & Pacific.GINI 1 0.87 0
Europe & Central Asia.PCGDP 1 1.08 0
Europe & Central Asia.LIFEEX 1 0.86 0
Europe & Central Asia.GINI 1 0.88 0
Latin America & Caribbean .PCGDP 1 1.15 0
Latin America & Caribbean .LIFEEX 1 0.76 0
Latin America & Caribbean .GINI 1 0.97 0
Middle East & North Africa.PCGDP 1 1.08 0
Middle East & North Africa.LIFEEX 1 0.63 0
Middle East & North Africa.GINI 1 0.90 0
North America.PCGDP 1 0.81 0
North America.LIFEEX 1 0.48 0
North America.GINI 1 1.26 0
South Asia.PCGDP 1 1.33 0
South Asia.LIFEEX 1 0.56 0
South Asia.GINI 1 0.82 0
Sub-Saharan Africa .PCGDP 1 0.85 0
Sub-Saharan Africa .LIFEEX 1 0.73 0
Sub-Saharan Africa .GINI 1 0.85 0

A rough visual demonstration of what we are looking at
library(reshape2); library(ggplot2)
D = collap(data, ~ region + year, dropcat = TRUE) %>% melt(1:2)

sd

.45
.65
.43
.40
.63
.52
.34
NG
.66
.34
.79
.43
.75
.93
.42
.37
.85
.61
.51
.72
.53

gplot(year, value, color = region, geom = "line", data = D) + labs(x=NULL,y=NULL) +

facet_wrap(“variable, scales = "free") + theme(legend.position = "top")
. — East Asia & Pacific ~ — Latin America & Caribbean —— North America — Sub-Saharan Africa
region
9 —— Europe & Central Asia — Middle East & North Africa —— South Asia
PCGDP LIFEEX GINI
60 -
80-
60000 - /
70- 50-
40000 -
60 - 40-
20000 -
50 - 30-
0 L)))) 40 L))))))))
1960 1980 2000 2020 1960 1980 2000 2020 1960 1980 2000 202(

Below the variation in inequality is decomposed by income group. The analysis clearly shows that
by far the greatest within-country variation in inequality is in low income countries, while the greatest

between country variation is in upper middle income countries.

Decomposing variation in inequality by income group
gsu(data, GINI ~ income, ~ country, FUN = "sd", combine.by = TRUE)

#i# overall.sd between.sd within.sd
High income 7.86 6.86 1.94
Low income 6.79 5.16 4.69

18

Lower middle income 9.
Upper middle income OF

Putting this on a standardized scale
gsu(data, GINI ~ income,
scale, trans.by = TRUE)

trans =

##
High income
Low income

overall.sd between.

Lower middle income
Upper middle income

36
75

country, FUN

"sd", combine.by = TRUE,

sd within.sd

1 0.87 0.25
1 0.76 0.69
1 0.81 0.38
1 0.99 0.32

As a final step in this part of the analysis, the long-term correlations between the three variables are
examined. For this the data is aggregated to decadal averages using collap, and then gsu is used to obtain
aggregated and within country transformed versions of this dataset. The overall, between country and
within country correlations of the three variables are then easily computed. The correlations show that
overall and between countries inequality is negatively correlated with income and life expectancy, while
within countries there is a zero relationship between income and inequality. A stylized fact that emerged
in the economics literature is that the between-country correlation of growth and inequality is negative
while the within-country relationship is positive. More recent empirical work however also shows that this
relationship is highly non-linear. A general pattern in this data is that the between-country correlations
are greater than the within-country correlations - a major point of critique for cross-country analysis.

Reduce dataset to 10-Year averages

dataD = collap(data[5:7], data.frame(data[1:3], decade =

Obtain between and within transformed data:

datBW = gsu(dataD, xt = ~

lapply(datBW, head, 5)

#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#
#it
#i#
#Hi#
#it
#i#
Hi#
#it

$overall

country, within.add.mean =

country

region

1 Afghanistan
2 Afghanistan
3 Afghanistan

South Asia Low
South Asia Low
South Asia Low
South Asia Low

4 Afghanistan

5 Afghanistan South Asia Low
$between

country
1 Afghanistan
2 Albania Europe
3 Algeria Middle East
4 American Samoa East

income decade PCGDP LIFEEX GINI
income 1960 NA 33.39967 NA
income 1970 NA 36.70089 NA
income 1980 NA 42.03909 NA
income 1990 NA 49.69089 NA
income 2000 349.7596 55.61818 NA

region income decade

South Asia Low income 1990

& Central Asia Upper middle income 1990
& North Africa Upper middle income 1990
Asia & Pacific Upper middle income 1990

B Andorra

$within
country
1 Afghanistan
2 Afghanistan
3 Afghanistan
4 Afghanistan
5 Afghanistan

Europe

region
South Asia Low
South Asia Low
South Asia Low
South Asia Low
South Asia Low

& Central Asia

income decade

income
income
income
income
income

Compute long-term correlations

data.frame (lapply(datBW,function(x)round(cor(x[6:7],use =

#it
#i#
#Hi#
#it
#i#
#Hi#t
#it
#i#

-30
-20
-10
0
10

round(data$year/10)*10))

FALSE, data.out = TRUE)

PCGDP
480.3213
2951.0325
3528.0841
10125.6670

1990 40598.7349

High income
PCGDP LIFEEX GINI
NA -15.4659040 NA
NA -12.1646818 NA
NA -6.8264798 NA
NA 0.8253182 NA
-130.5616 6.7526111 NA

0.60
1.00
-0.43

LIFEEX
48.86557
71.73397
63.35445

NA
NA

"pairwise.complete.obs"),2)))

-0.41
-0.43
1.00

overall .PCGDP overall.LIFEEX overall.GINI between.PCGDP between.LIFEEX between.GINI
PCGDP 1.00 0.57 -0.39 1.00
LIFEEX 0.57 1.00 -0.40 0.60
GINI -0.39 -0.40 1.00 -0.41
within.PCGDP within.LIFEEX within.GINI
PCGDP 1.00 0.33 0.00
LIFEEX 0.33 1.00 -0.14
GINI 0.00 -0.14 1.00

19

GINI

NA
29.63333
34.36667
NA

NA

As a last part of the demonstration I show below that gsu can also be used for certain data wrangling
tasks, such as computing growth rates of one or multiple variables in multilevel datasets or obtaining a
matrix of values from a column in a multilevel dataset. I conceed that a function like plyr may be just
as adept to this task, but the example is neat: Below I hierarchically cluster economies based on the
correlatiof their GDP growth rates, and then use the average R? of a countries growth with all other
countries to find the 20 most and the 20 least internationally integrated economies based on this metric.

data = datal[order(data$country,data$year),]

data$PCGR = gsu(data, PCGDP ~ country, trans = function(x) (x-dplyr::lag(x))/dplyr::lag(x)*100,
combine.by = TRUE, trans.by = TRUE, data.out = TRUE, data.out.drop = TRUE)

GRmat = t(gsu(data, PCGR ~ country, FUN = function(x)x, na.rm =
rownames (GRmat) = unique(data$year)

FALSE, combine.by = TRUE))

keep = apply(GRmat,2,function(x)sum(!is.na(x)))>40
GRmat = GRmat[,keep]; dim(GRmat)

[1]1 59 120

GRmat[1:5,1:5]

#i# Algeria Andorra Argentina Australia Austria
1960 NA NA NA NA NA
1961 -15.73 NA 3.75 0.47 4.96
1962 -21.65 NA -2.41 -1.15 2.02
1963 31.01 NA -6.77 4.20 3.47
1964 3.16 NA 8.46 4.90 5.42
GRcormat = cor(GRmat, use = "pairwise.complete.obs")
par(mar = c(0.5,4,2,0.1), cex = 0.5)

plot(hclust(as.dist(1-GRcormat), method="complete"))

Cluster Dendrogram

w
—
S
-
=
2
$ | Le :
s | & =
=] 3O
g|x g 22| ez 5
1S | o Q ol | Es | < o =
0 3 | € ~s gl | 3= 2 =8| le TE
© 4 E =2 oo L€ £ IS o S5
2 Mg _ G2 SEo| |? < el= B = 22
2| = e SN | [Occ [|E] =] |2 ﬁ‘;’ o =
Z || = O © e e [|g] sl el (e < = 51 o
| |8 < o s|E = |12 e | 2 L S0, P
os E -85 g0 » | Pepmee| 5 g2 | 1S [Feed o <
3 SE o598 5c aon | |2 S a2 o8| O &< 33 S8 S
R 8 g Lkl 2 & e 2 o || P8 == LB
k Z O EoF c 22 S 83 @i © =98¢ o255 | |oc TS c =]
=-J X5 EQ © oS a Eo Ses |55 68] @ £
Se |l ﬂs2 éﬂ <= TEo0 55 o T arow Eﬂg'g 2o Qc >SE g I
i = = £ ToogS 05 @ Axogs o |® © a O
EN U P g “eEm &P s ooz |6
g 5 2 ghc 0o A X0 2 I5 So o T s
= z == ;SRS g5 s S G 5 E sl
= I 2o SE% g5 R EE &5 o
5 = ST Qo < o5
L & £ 51 o= 02 S 32
o | 3 £ £ ° S & o 38 08
=] %] =) <@
8 (&) 3’3 ‘%..:) ch': o
£ =i
s a@n
33 Og
n £
5

20

20 most internationally integrated economies based on R°2 of growth rates
head(sort (apply(GRcormat~2,2,mean), decreasing = TRUE),20)

#i# France Belgium Italy Austria Cyprus Netherlands
0.12840163 0.12260422 0.11513234 0.10695267 0.10496995 0.10074666
#H# Germany Portugal Spain Barbados Canada Finland
0.09767770 0.09671805 0.09385140 0.09327988 0.09182866 0.08757321
#i# Guatemala Japan Greece Denmark United Kingdom United States
0.08565475 0.08499938 0.08381706 0.08365582 0.08122768 0.08065376
#i# Puerto Rico Sweden

0.07972002 0.07790377

20 least internationally integrated economies based on R°2 of growth rates
head(sort (apply(GRcormat~2,2,mean), decreasing = FALSE),20)

Central African Republic Gambia, The Iraq Zimbabwe
#i# 0.02050957 0.02280265 0.02380236 .02439412
#i# Malawi Sierra Leone Rwanda Chad
#i# 0.02461948 0.02554266 0.02566427 .02795084
#it Morocco Benin Pakistan Burundi
0.02802228 0.02850689 0.02895090 .02925478
#i# Papua New Guinea Niger Cameroon Algeria
#i# 0.02975633 0.02987594 0.03006668 .03028474
#i# Guinea-Bissau Dominican Republic Eswatini Mali
#i# 0.03030095 0.03129271 0.03132721 .03144876

2.4 A Note on Performance

I do not show official benchmarks results for gsu since for most of it’s functionality there is no function
to directly compare it to. I have however tested it on the WDI dataset used in the collap benchmark and
found the following: In the default mode calling gsu on the WDI dataset takes about 0.5 seconds, whereas
using base::summary takes about 1.1 seconds. For the xt method and with xt.data.table = TRUE, g¢su
takes about 2.6 seconds to provide a complete overall, between and within country summary of the WDI
dataset. The aggregate method takes longer at around 10 seconds. If only the data is requested with
data.out = TRUE, within.add.mean = FALSE and xt.data.table = TRUE, g¢su takes only about 1.4
seconds to output the aggregated and within-transformed datasets. Given that data.table itself takes
about 0.6 seconds just to aggregate this dataset by country, 1.4 seconds for a within transformed dataset
of this size is very fast.

2.5 Conclusion

gsu is an advanced summary command for cross-sectional and multilevel (panel) data, which also of-
fers a significant edge over existing summary functions in terms of functionality, flexibility of use and
performance. The seamless integration of the 'by’, 'xt’, 'TFUN’ and ’trans’ arguments, together with its
intelligent reshaping of outputs into a parsimonious format and the possibility to quickly compute and
output transformed data, will make it, together with collap, a prefered tool, at the very least for everyone
frequently working with multilevel data in R.

21

	Collap
	Key Features
	Syntax of collap
	Demonstration
	Benchmark
	Conclusion

	Qsu
	Key Features
	Syntax of qsu
	Demonstration
	A Note on Performance
	Conclusion

