
R sample bug description

Kellie Ottoboni and Philip Stark
March 7, 2017

The problem

The pseudorandom number generators (PRNGs) in R output sequences of bits
that represent numbers between 0 and 1, but additional steps are required to use
these values to generate random samples. The sampling algorithm implemented
in R relies on uniformly distributed random integers on the set {1, 2, . . . , n} for
arbitrary positive n. The method that R uses to convert the random bits output
by the pseudorandom number generator to integers is flawed: there exist values
of n for which the method favors some integers over others.
The PRNGs generate values U ∈ {0, 2−w, 2× 2−w, ..., 1− 2−w}, where w is the
number of bits output. bnUc will not be uniform unless the scaling factor n is a
power of two: nU rounds down to certain integers more often than others.

Theorem: There exists n < 2w such that, to first order, the ratio of
the largest selection probability to the smallest selection probability
is 1 + n2−w+1.1

The sample function does different things for two cases: n >= 231 and n < 231.
The nonuniform integers problem is worst when n is on the edge of these two
cases, just below the cutoff. If n is just below two billion and is not a power of
two, then this ratio can be as large as 1.5.
This error in random integer selection probabilities feeds back into the algorithm
for sampling. If certain integers have higher probability, then certain samples or
permutations will also occur with higher probability.

A better way to generate random integers

A more accurate way to generate random integers on {0, . . . , n} is to use pseu-
dorandom bits directly. The integer n can be represented with dk = log2(n)e
bits. We may generate k pseudorandom bits (for instance, by taking the most
significant k bits from the PRNG output). If that binary number is larger than
n, then discard it and repeat until getting k bits that represent an integer less
than or equal to n.2 This procedure may be inefficient, as we can potentially
throw out half of draws if n is close to a power of 2, but the resulting integers
will actually be uniformly distributed.

1Knuth, D. (1998). The Art of Computer Programming, Volume 2: Semi numerical
Algorithms. (pp. 133)

2See Knuth (1998) pp. 114.

1



The guts of sample

sample generates simple random samples in two ways. If you are sampling fewer
than half of items from {1, ..., n} for n > 107, it calls the sample2 function in
the file unique.c. Otherwise, it calls the sample function in the file random.c.
Each of these two functions handles two cases separately: when n >= 231 and
when n < 231. The cutoff is 231 because this is the maximum integer value.
Thus, there are four places in the code that generate a random integer on the
range {1, ..., n}. They are lines 1770 and 1780 in unique.c and lines 516, 524,
538, and 543 in random.c. Each essentially uses the same method; they differ in
their data types and storage structures. We include one instance of it below:

R_xlen_t n = (R_xlen_t) dn;
double *x = (double *)R_alloc(n, sizeof(double));
double *ry = REAL(y);
for (R_xlen_t i = 0; i < n; i++) x[i] = (double) i;
for (R_xlen_t i = 0; i < k; i++) {

R_xlen_t j = (R_xlen_t)floor(n * ru());
ry[i] = x[j] + 1;
x[j] = x[--n];

}

The first line converts the data type of dn, the maximum population index, and
renames it n. Second and fourth line create an array x which contains the indices
{1, . . . , dn} stored as doubles. The third line changes the array y, an empty
array of length k, to reals. The work starts at the fifth line: we sample a random
uniform, multiply it by the maximum population index n, and take the floor
to convert it to an integer of type R_xlen_t. We take this item out of x, add
one, and put that item in the corresponding element of y. The last element of x
takes its spot and we decrement n. We repeat this until y is full.

The question is, are we sampling from x uniformly? This depends on the values
of n and the number of bits output by the random uniform function.

Random integer generation

The main function used to generate random uniforms is unif_rand(). It gen-
erates numbers on [0, 1) with up to 32 bits of precision, depending on which
PRNG the R user specifies.

Some PRNGs in R only return 25-bit integers, as evidenced by the cryptic
comments

/* Our PRNGs have at most 32 bit of precision, and all have at least 25 */

2



on line 451 of random.c and

// more fine-grained unif_rand() for n > INT_MAX

on line 1743 of unique.c.

This is insufficient to generate all possible integers on a range larger than 225.
To compensate for this, they define the following function:

static R_INLINE double ru()
{

double U = 33554432.0;
return (floor(U*unif_rand()) + unif_rand())/U;

}

This function uses two PRNs from unif_rand() to get an integer with more
bits of precision. First, they multiply a random uniform value on [0, 1) by 225

and take the floor. Assuming this random uniform has at least 25 bits (and
is itself uniformly distributed), this will result in an integer between 1 and 225

that truly is uniformly distributed. Then they add another random uniform
[0, 1) to it and divide by 225, resulting in a value on [0, 1) that is uniformly
distributed and has 50 bits of precision. This is possible because they store
the output as a double. However, note that a double has 53 bits of preci-
sion (https://stat.ethz.ch/R-manual/R-devel/library/base/html/double.html),
so even this procedure is insufficient to produce all doubles if the chosen PRNG
only produces 25-bit integers.

PRNGS in R

R supplies the following PRNGs:

• Wichmann-Hill
• Marsaglia multiply-with-carry
• Super Duper LCG
• Mersenne Twister
• Knuth-TAOCP and Knuth-TAOCP-2002 (a 32-bit GFSR with lagged

Fibonnaci sequences)
• L’Ecuyer CMRG

It isn’t clear which, if any, of these returns 25-bit integers. Most seem to use 32
bits of precision. Perhaps the ru() function is a relic from earlier versions of R,
or maybe some of these PRNGs give bad behavior in their low order bits.

3



Magnitude of the problem

As discussed above, there are two regimes: we use ru() when n >= 231 and
unif_rand() when n < 231. When we use ru(), the wordsize is at least w = 50
bits and at most w = 53 bits (this depends on the output of the PRNG we
choose). The ratio of selection probabilities only becomes large (on the order
of 10−3) for very large population sizes, say n > 240 ≈ 1012. The problem is
worst for large population sizes just below the threshold 231. In this case, we
use unif_rand(), which gives outputs with word size w = 32. The maximum
ratio of selection probabilities can get as large as 1.5 if n is just below 231, or
about 2 billion. Even if n ≈ 220 is close to 100,000, the ratio is about 1.0002.

4


	R sample bug description
	The problem
	A better way to generate random integers
	The guts of sample
	Random integer generation
	PRNGS in R
	Magnitude of the problem


