[Rd] feature request: optim() iteration of functions that return multiple values

J C Nash pro|jcn@@h @end|ng |rom gm@||@com
Tue Aug 8 14:13:31 CEST 2023


But why time methods that the author (me!) has been telling the community for
years have updates? Especially as optimx::optimr() uses same syntax as optim()
and gives access to a number of solvers, both production and didactic. This set
of solvers is being improved or added to regularly, with a major renewal almost
complete (for the adventurous, code on https://github.com/nashjc/optimx).

Note also that the default Nelder-Mead is good for exploring function surface and
is quite robust at getting quickly into the region of a minimum, but can be quite
poor in "finishing" the process. Tools have different strengths and weaknesses.
optim() was more or less state of the art a couple of decades ago, but there are
other choices now.

JN

On 2023-08-08 05:14, Sami Tuomivaara wrote:
> Thank you all very much for the suggestions, after testing, each of them would be a viable solution in certain contexts.  Code for benchmarking:
> 
> # preliminaries
> install.packages("microbenchmark")
> library(microbenchmark)
> 
> 
> data <- new.env()
> data$ans2 <- 0
> data$ans3 <- 0
> data$i <- 0
> data$fun.value <- numeric(1000)
> 
> # define functions
> 
> rosenbrock_env <- function(x, data)
> {
>    x1 <- x[1]
>    x2 <- x[2]
>    ans <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
>    ans2 <- ans^2
>    ans3 <- sqrt(abs(ans))
>    data$i <- data$i + 1
>    data$fun.value[data$i] <- ans
>    ans
> }
> 
> 
> rosenbrock_env2 <- function(x, data)
> {
>    x1 <- x[1]
>    x2 <- x[2]
>    ans <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
>    ans2 <- ans^2
>    ans3 <- sqrt(abs(ans))
>    data$ans2 <- ans2
>    data$ans3 <- ans3
>    ans
> }
> 
> rosenbrock_attr <- function(x)
> {
>    x1 <- x[1]
>    x2 <- x[2]
>    ans <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
>    ans2 <- ans^2
>    ans3 <- sqrt(abs(ans))
>    attr(ans, "ans2") <- ans2
>    attr(ans, "ans3") <- ans3
>    ans
> }
> 
> 
> rosenbrock_extra <- function(x, extraInfo = FALSE)
> {
>    x1 <- x[1]
>    x2 <- x[2]
>    ans <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
>    ans2 <- ans^2
>    ans3 <- sqrt(abs(ans))
>    if (extraInfo) list(ans = ans, ans2 = ans2, ans3 = ans3)
>    else ans
> }
> 
> 
> rosenbrock_all <- function(x)
> {
>    x1 <- x[1]
>    x2 <- x[2]
>    ans <- 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
>    ans2 <- ans^2
>    ans3 <- sqrt(abs(ans))
>    list(ans = ans, ans2 = ans2, ans3 = ans3)
> }
> 
> returnFirst <- function(fun) function(...) do.call(fun,list(...))[[1]]
> rosenbrock_all2 <- returnFirst(rosenbrock_all)
> 
> 
> # benchmark all functions
> set.seed <- 100
> 
> microbenchmark(env = optim(c(-1,2), rosenbrock_env, data = data),
>                 env2 = optim(c(-1,2), rosenbrock_env2, data = data),
>                 attr = optim(c(-1,2), rosenbrock_attr),
>                 extra = optim(c(-1,2), rosenbrock_extra, extraInfo = FALSE),
>                 all2 = optim(c(-1,2), rosenbrock_all2),
>                 times = 100)
> 
> 
> # correct parameters and return values?
> env <- optim(c(-1,2), rosenbrock_env, data = data)
> env2 <- optim(c(-1,2), rosenbrock_env2, data = data)
> attr <- optim(c(-1,2), rosenbrock_attr)
> extra <- optim(c(-1,2), rosenbrock_extra, extraInfo = FALSE)
> all2 <- optim(c(-1,2), rosenbrock_all2)
> 
> # correct return values with optimized parameters?
> env. <- rosenbrock_env(env$par, data)
> env2. <- rosenbrock_env(env2$par, data)
> attr. <- rosenbrock_attr(attr$par)
> extra. <- rosenbrock_extra(extra$par, extraInfo = FALSE)
> all2. <- rosenbrock_all2(all2$par)
> 
> # functions that return more than one value
> all. <- rosenbrock_all(all2$par)
> extra2. <- rosenbrock_extra(extra$par, extraInfo = TRUE)
> 
> # environment values correct?
> data$ans2
> data$ans3
> data$i
> data$fun.value
> 
> 
> microbenchmarking results:
> 
> Unit: microseconds
>    expr     min        lq      mean    median         uq       max neval
>     env 644.102 3919.6010 9598.3971 7950.0005 15582.8515 42210.900   100
>    env2 337.001  351.5510  479.2900  391.7505   460.3520  6900.800   100
>    attr 350.201  367.3010  502.0319  409.7510   483.6505  6772.800   100
>   extra 276.800  287.2010  402.4231  302.6510   371.5015  6457.201   100
>    all2 630.801  646.9015  785.9880  678.0010   808.9510  6411.102   100
> 
> rosenbrock_env and _env2 functions differ in that _env accesses vectors in the defined environment by indexing, whereas _env2 doesn't (hope I interpreted this right?).  This appears to be expensive operation, but allows saving values during the steps of the optim iteration, rather than just at convergence.  Overall, _extra has consistently lowest median execution time!
> 
> My earlier workaround was to write two separate functions, one of which returns extra values; all suggested approaches simplify that approach considerably.  I am also now more educated about attributes and environments that I did not know how to utilize before and that proved to be very useful concepts.  Again, thank you everyone for your input!
> 
> 
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-devel using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-devel



More information about the R-devel mailing list