[Rd] S3 generic method dispatch on promises
Paul Johnson
pauljohn32 at gmail.com
Sat Jan 17 00:02:36 CET 2015
Dear R friends
I wanted a function to make a simple percent table that would be easy for
students to use. The goal originally was to have a simple thing people
would call like this
pctable(rowvar, colvar, data)
and the things "rowvar" and "colvar" might be names of variables in data. I
wanted to avoid the usage of "with" (as we now see in the table help).
Then some people wanted more features, and I agreed with the suggestion to
create a formula interface that people can call like so:
pctable(rowvar ~ colvar, data)
I end up with a generic function pctable and methods pctable.default,
pctable.formula, pctable.character.
I got that working, mostly I understand what's going on.
Except the following, which, actually, is a good lesson to me about
promises and method dispatch in R. An S3 generic will not send a call with
a promise in the first argument to pctable.default (as I had mistakenly
hoped). I'll paste in all the code below, but I think you will know the
answer even without running it.
pctable is a generic function. In workspace, I have no objects x and y,
but there are variables inside data.frame dat named x and y. Since y is
not an object, the method dispatch fails thus:
> pctable(y, x, dat)
Error in pctable(y, x, dat) (from #3) : object 'y' not found
This direct call on pctable.default works (recall y and x are promises):
> pctable.default(y, x, dat)
Count (column %)
x
y 1 2 3 4 Sum
A 5(20%) 3(12%) 5(20%) 6(24%) 19
B 9(36%) 5(20%) 4(16%) 6(24%) 24
C 1(4%) 6(24%) 3(12%) 2(8%) 12
D 4(16%) 4(16%) 6(24%) 5(20%) 19
E 6(24%) 7(28%) 7(28%) 6(24%) 26
Sum 25 25 25 25 100
All the methods work fine when the first argument is a language object.
This works (dispatches to pctable.formula)
> pctable(y ~ x, dat)
Count (column %)
x
y 1 2 3 4 Sum
A 5(20%) 3(12%) 5(20%) 6(24%) 19
B 9(36%) 5(20%) 4(16%) 6(24%) 24
C 1(4%) 6(24%) 3(12%) 2(8%) 12
D 4(16%) 4(16%) 6(24%) 5(20%) 19
E 6(24%) 7(28%) 7(28%) 6(24%) 26
Sum 25 25 25 25 100
This works (dispatches to pctable.default)
> pctable(dat$y, dat$x)
Count (column %)
dat$x
dat$y 1 2 3 4 Sum
A 5(20%) 3(12%) 5(20%) 6(24%) 19
B 9(36%) 5(20%) 4(16%) 6(24%) 24
C 1(4%) 6(24%) 3(12%) 2(8%) 12
D 4(16%) 4(16%) 6(24%) 5(20%) 19
E 6(24%) 7(28%) 7(28%) 6(24%) 26
Sum 25 25 25 25 100
However, this fails because y is not an object with a type
> pctable(y, x, dat)
Error in pctable(y, x, dat) (from #3) : object 'y' not found
Can R be tricked to send that call to pctable.default, where it does work?
Here's the code, I'm working on documentation, will put in package
rockchalk eventually, but hate to leave this problem until I fully
understand it.
pctable <- function(rv, ...)
{
UseMethod("pctable")
}
## rv: row variable, quoted or not
## cv: column variable, quoted or not
pctable.default <- function(rv, cv, data = parent.frame(),
rvlab = NULL, cvlab = NULL,
colpct = TRUE, rowpct = FALSE,
exclude = c(NA, NaN), rounded = FALSE)
{
rvlabel <- if (!missing(rv)) deparse(substitute(rv))
cvlabel <- if (!missing(cv)) deparse(substitute(cv))
rvlab <- if (is.null(rvlab)) rvlabel else rvlab
cvlab <- if (is.null(cvlab)) cvlabel else cvlab
rvin <- eval(substitute(rv), envir = data, enclos = parent.frame())
cvin <- eval(substitute(cv), envir = data, enclos = parent.frame())
t1 <- table(rvin, cvin, dnn = c(rvlab, cvlab), exclude = exclude)
rownames(t1)[is.na(rownames(t1))] <- "NA" ## symbol to letters
colnames(t1)[is.na(colnames(t1))] <- "NA"
if (rounded) t1 <- round(t1, -1)
t2 <- addmargins(t1, c(1,2))
t1colpct <- round(100*prop.table(t1, 2), 1)
t1rowpct <- round(100*prop.table(t1, 1), 1)
t1colpct <- apply(t1colpct, c(1,2), function(x) gsub("NaN", "", x))
t1rowpct <- apply(t1rowpct, c(1,2), function(x) gsub("NaN", "", x))
res <- list("count" = t2, "colpct" = t1colpct, "rowpct" = t1rowpct,
call = match.call())
class(res) <- "pctable"
print(res, colpct = colpct, rowpct = rowpct)
invisible(res)
}
pctable.formula <- function(formula, data = NULL, rvlab = NULL,
cvlab = NULL, colpct = TRUE, rowpct = FALSE,
exclude = c(NA, NaN), rounded = FALSE,
..., subset = NULL)
{
if (missing(data) || !is.data.frame(data)) stop("pctable requires a
data frame")
if (missing(formula) || (length(formula) != 3L))
stop("pctable requires a two sided formula")
mt <- terms(formula, data = data)
if (attr(mt, "response") == 0L) stop("response variable is required")
mf <- match.call(expand.dots = FALSE)
keepers <- match(c("formula", "data", "subset", "na.action"),
names(mf), 0L)
mf <- mf[c(1L, keepers)]
mf$drop.unused.levels <- FALSE
mf[[1L]] <- quote(stats::model.frame)
mf <- eval(mf, parent.frame())
## response is column 1
rvlab <- if (missing(rvlab)) colnames(mf)[1] else rvlab
cvlab <- if (missing(cvlab)) colnames(mf)[2] else cvlab
res <- pctable.default(mf[[1L]], mf[[2L]], data = mf,
rvlab = rvlab, cvlab = cvlab,
colpct = colpct, rowpct = rowpct,
exclude = exclude, rounded = rounded)
invisible(res)
}
pctable.character <- function(rowvar, colvar, data = NULL, rvlab = NULL,
cvlab = NULL, colpct = TRUE,
rowpct = FALSE, exclude = c(NA, NaN), rounded =
FALSE,
..., subset = NULL)
{
if (missing(data) || !is.data.frame(data)) stop("pctable requires a
data frame")
## colvar <- if (!is.character(colvar)) deparse(substitute(colvar))
else colvar
colvar <- as.character(substitute(colvar))[1L]
rvlab <- if (missing(rvlab)) rowvar else rvlab
cvlab <- if (missing(cvlab)) colvar else cvlab
t1 <- with(data, table(data[[rowvar]], data[[colvar]], dnn = c(rvlab,
cvlab), exclude = exclude))
rownames(t1)[is.na(rownames(t1))] <- "NA" ## symbol to letters
colnames(t1)[is.na(colnames(t1))] <- "NA"
if (rounded) t1 <- round(t1, -1)
t2 <- addmargins(t1, c(1,2))
t1colpct <- round(100*prop.table(t1, 2), 1)
t1rowpct <- round(100*prop.table(t1, 1), 1)
t1colpct <- apply(t1colpct, c(1,2), function(x) gsub("NaN", "", x))
t1rowpct <- apply(t1rowpct, c(1,2), function(x) gsub("NaN", "", x))
res <- list("count" = t2, "colpct" = t1colpct, "rowpct" = t1rowpct,
call = match.call())
class(res) <- "pctable"
print(res, colpct = colpct, rowpct = rowpct)
invisible(res)
}
## OK, I see now I'm doing the same work over and over, will extract
## a middle chunk out of each of those methods. And finally my cool print
method.
print.pctable <- function(tab, colpct = TRUE, rowpct = FALSE){
count <- tab[["count"]]
t3 <- count
if (colpct && !rowpct) {
cpct <- tab[["colpct"]]
for(j in rownames(cpct)){
for(k in colnames(cpct)){
t3[j, k] <- paste0(count[j, k], "(", cpct[j, k], "%)")
}
}
cat("Count (column %)\n")
print(t3)
return(invisible(t3))
}
## rowpct == TRUE< else would have returned
rpct <- tab[["rowpct"]]
for(j in rownames(rpct)){
for(k in colnames(rpct)){
t3[j, k] <- paste0(count[j, k], "(", rpct[j, k], "%)")
}
}
if (!colpct) {
cat("Count (row %)\n")
print(t3)
return(invisible(t3))
} else {
cpct <- tab[["colpct"]]
t4 <- array("", dim = c(1, 1) + c(2,1)*dim(tab$colpct))
t4[seq(1, NROW(t4), 2), ] <- t3
rownames(t4)[seq(1, NROW(t4), 2)] <- rownames(t3)
rownames(t4)[is.na(rownames(t4))] <- ""
colnames(t4) <- colnames(t3)
for(j in rownames(tab[["colpct"]])) {
for(k in colnames(tab[["colpct"]])){
t4[1 + which(rownames(t4) == j) ,k] <-
paste0(tab[["colpct"]][j, k], "%")
}
}
names(dimnames(t4)) <- names(dimnames(count))
cat("Count (row %)\n")
cat("column %\n")
print(t4, quote = FALSE)
return(invisible(t4))
}
}
And usage examples
dat <- data.frame(x = gl(4, 25),
y = sample(c("A", "B", "C", "D", "E"), 100, replace=
TRUE))
## Here's what I was aiming for, in the beginning
pctable(y ~ x, dat)
pctable(y ~ x, dat, exclude = NULL)
pctable(y ~ x, dat, rvlab = "My Outcome Var", cvlab = "My Columns")
## People who like row percents asked for this
pctable(y ~ x, dat, rowpct = TRUE, colpct = FALSE)
## Some people want both. Tiresome.
pctable(y ~ x, dat, rowpct = TRUE, colpct = TRUE)
pctable(y ~ x, dat, rowpct = TRUE, colpct = TRUE, exclude = NULL)
tab <- pctable(y ~ x, dat, rvlab = "My Outcome Var", cvlab = "My Columns")
print(tab, rowpct = TRUE, colpct = FALSE)
print.pctable(tab, rowpct = TRUE, colpct = TRUE)
## I also wanted an interface that would allow calls like
## pctable(y, x, dat)
## which I was able to do, but not when pctable is a method.
## As long as one writes in an existing variable, this dispatches
## pctable.default and result is OK
pctable(dat$y, dat$x)
pctable(dat$y, dat$x, rowpct = TRUE, colpct = FALSE)
pctable(dat$y, dat$x, rowpct = TRUE, colpct = TRUE)
pctable(dat$y, dat$x, rowpct = TRUE, colpct = TRUE, exclude = NULL)
tab <- pctable(dat$y, dat$x)
print(tab, rowpct = TRUE, colpct = FALSE)
print(tab, rowpct = TRUE, colpct = TRUE)
pctable(dat$y, dat$x, rowpct = TRUE, colpct = TRUE, exclude = c(NA, "E"))
pctable(dat$y, dat$x, rowpct = TRUE, colpct = TRUE, exclude = c("E"))
## Why do NA's get excluded
pctable(dat$y, dat$x, rowpct = TRUE, colpct = TRUE, exclude = c("B", "2"))
## This succeeds
pctable.default(y, x, dat)
## Next causes error
pctable(y, x, dat)
## Error in pctable(y, x, dat) (from #3) : object 'y' not found
At one point yesterday, I was on the verge of comprehending the parse tree
:)
--
Paul E. Johnson
Professor, Political Science Acting. Director
1541 Lilac Lane, Room 504 Center for Research Methods
University of Kansas University of Kansas
http://pj.freefaculty.org http://crmda.ku.edu
<http://quant.ku.edu>
[[alternative HTML version deleted]]
More information about the R-devel
mailing list