[Rd] Rd error message
Terry Therneau
therneau at mayo.edu
Fri Dec 16 23:12:47 CET 2011
I get the following error from one of my Rd files in R CMD check (R
2-14.0)
* checking Rd files ... WARNING
Error in switch(attr(block, "Rd_tag"), TEXT = if (!grepl("^[[:space:]]*
$", :
EXPR must be a length 1 vector
problem found in ‘backsolve.Rd’
This is likely something that will be glaringly obvious once it's
pointed out, but without a line number I can't seem to find it. I've
been counting braces but don't see a mismatch.
FYI, the file is below. (It is modeled on chol.Rd from the Matrix
package.)
Terry Therneau
--------------------------------------------------
\name{backsolve}
\alias{backsolve-methods}
\title{Solve an Upper or Lower Triangular System}
\alias{backsolve}
\alias{backsolve,gchol-method}
\alias{backsolve,gchol.bdsmatrix-method}
\description{
Solves a system of linear equations where the coefficient matrix is
upper (or \sQuote{right}, \sQuote{R}) or lower (\sQuote{left},
\sQuote{L}) triangular.\cr
\code{x <- backsolve(R, b)} solves \eqn{R x = b}.
}
\usage{
backsolve(r, \dots)
\S4method{backsolve}{gchol}(r, x, k=ncol(r), upper.tri=TRUE, \dots)
\S4method{backsolve}{gchol.bdsmatrix}(r, x, k=ncol(r), upper.tri=TRUE,
\dots)
}
\arguments{
\item{r}{a matrix or matrix-like object}
\item{x}{a vector or a matrix whose columns give the right-hand sides
for
the equations.}
\item{k}{The number of columns of \code{r} and rows of \code{x} to
use.}
\item{upper.tri}{logical; if \code{TRUE} (default), the \emph{upper}
\emph{tri}angular part of \code{r} is used. Otherwise, the lower
one.}
\item{\dots}{further arguments passed to other methods}
}
\section{Methods}{
Use \code{\link{showMethods}(backsolve)} to see all the defined
methods;
the two created by the bdsmatrix library are described here:
\describe{
\item{bdsmatrix}{\code{signature=(r= "gchol")} for a generalized
cholesky decomposition}
\item{bdsmatrix}{\code{signature=(r= "gchol.bdsmatrix")} for the
generalize cholesky decomposition of a bdsmatrix object}
}
}
\value{
The solution of the triangular system. The result will be a vector if
\code{x} is a vector and a matrix if \code{x} is a matrix.
Note that \code{forwardsolve(L, b)} is just a wrapper for
\code{backsolve(L, b, upper.tri=FALSE)}.
}
\description{
The generalized Cholesky decompostion of a symmetric matrix A is
\eqn{A = LDL'}{A= LD t(L)} where D is diagonal, L is lower triangular,
and \eqn{L'}{t(L)} is the transpose of L.
These functions solve either \eqn{L\sqrt{D} x =b}{L sqrt(D) x=b}
(when \code{upper.tri=FALSE}) or \eqn{\sqrt{D}L' x=b}{sqrt(D) t(L)
x=b}.
}
\note{
The \code{bdsmatrix} package promotes the base R \code{backsolve}
function to a
generic.
To see the full documentation for the default method, view
\code{backsolve}
from the \code{base} package.
}
\seealso{
\code{\link{forwardsolve}}, \code{\link{gchol}}
}
\keyword{ array }
\keyword{ algebra }
More information about the R-devel
mailing list