[Rd] zero variance in part of a glm (PR#11355)

m.crawley at imperial.ac.uk m.crawley at imperial.ac.uk
Thu May 1 09:25:09 CEST 2008


In this real example (below), all four of the replicates in one
treatment combination had zero failures, and this produced a very high
standard error in the summary.lm.
=20
Just adding one failure to one of the replicates produced a well-behaved
standard error.
=20
I don't know if this is a bug, but it is certainly hard for users to
understand.
=20
I would value your comments=20
=20
Thanks
=20
Best wishes,
=20
Mick
=20
Prof  M.J. Crawley
=20
Imperial College London
Silwood Park
Ascot
Berks
SL5 7PY
UK
=20
Phone (0) 207 5942 216
Fax     (0) 207 5942 339
=20
The data are from a bioassay in which a factorial experiment with two
factors (antibio and toxin) each with three levels was replicated four
times. The response is "mi" and "n-mi"
=20
Note that lines 17 to 20 in the dataframe have no failures (24 dead out
of 24 individuals)

data<-read.table("c:\\temp\\ab1.txt",header=3DT)
attach(data)
names(data)
=20
[1] "antibio" "toxin"   "rep"     "alive"   "af"      "dead"    "mi"

[8] "n"=20=20=20=20
=20
data
=20
=20
=20
   antibio   toxin rep alive af dead mi  n
1     camp control   1    24  0    0  0 24
2     camp control   2    23  0    1  1 24
3     camp control   3    23  0    1  1 24
4     camp control   4    21  0    3  3 24
5     camp  Cry1Ab   1    21  4    3  7 24
6     camp  Cry1Ab   2    20  3    4  7 24
7     camp  Cry1Ab   3    20  4    4  8 24
8     camp  Cry1Ab   4    18  7    6 13 24
9     camp   Vip3A   1     7  3   17 20 24
10    camp   Vip3A   2    10  6   14 20 24
11    camp   Vip3A   3    11  5   13 18 24
12    camp   Vip3A   4    10  2   14 16 24
13   bcock control   1    21  0    3  3 24
14   bcock control   2    24  0    0  0 24
15   bcock control   3    24  3    0  3 24
16   bcock control   4    23  1    1  2 24
17   bcock  Cry1Ab   1     4  4   20 24 24
18   bcock  Cry1Ab   2     4  4   20 24 24
19   bcock  Cry1Ab   3     1  1   23 24 24
20   bcock  Cry1Ab   4     2  2   22 24 24
21   bcock   Vip3A   1    11  4   13 17 24
22   bcock   Vip3A   2    15  5    9 14 24
23   bcock   Vip3A   3     5  3   19 22 24
24   bcock   Vip3A   4    10  6   14 20 24
25     ana control   1    23  0    1  1 24
26     ana control   2    23  0    1  1 24
27     ana control   3    22  0    2  2 24
28     ana control   4    23  0    1  1 24
29     ana  Cry1Ab   1    18  1    6  7 24
30     ana  Cry1Ab   2    17  4    7 11 24
31     ana  Cry1Ab   3    13  4   11 15 24
32     ana  Cry1Ab   4    14  3   10 13 24
33     ana   Vip3A   1    21 12    3 15 24
34     ana   Vip3A   2    12  6   12 18 24
35     ana   Vip3A   3     9  5   15 20 24
36     ana   Vip3A   4     9  1   15 16 24
=20
y<-cbind(mi,n-mi)
model<-glm(y~antibio*toxin,quasibinomial)
summary(model)
=20

Call:
glm(formula =3D y ~ antibio * toxin, family =3D quasibinomial)
=20
Deviance Residuals:=20
    Min       1Q   Median       3Q      Max=20=20
-2.0437  -0.5645  -0.1022   0.6921   1.9996=20=20
=20
Coefficients:
                           Estimate Std. Error  t value Pr(>|t|)=20=20=20=
=20
(Intercept)              -2.901e+00  5.020e-01   -5.780 3.79e-06 ***
antibiobcock              5.035e-01  6.441e-01    0.782    0.441=20=20=20=
=20
antibiocamp               2.100e-15  7.099e-01 2.96e-15    1.000=20=20=20=
=20
toxinCry1Ab               2.818e+00  5.494e-01    5.129 2.15e-05 ***
toxinVip3A                3.840e+00  5.600e-01    6.857 2.29e-07 ***
antibiobcock:toxinCry1Ab  2.050e+01  2.365e+03    0.009    0.993=20=20=20=
=20
antibiocamp:toxinCry1Ab  -4.721e-01  7.795e-01   -0.606    0.550=20=20=20=
=20
antibiobcock:toxinVip3A  -2.868e-01  7.381e-01   -0.389    0.701=20=20=20=
=20
antibiocamp:toxinVip3A    2.748e-01  7.975e-01    0.345    0.733=20=20=20=
=20
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1=20
=20
(Dispersion parameter for quasibinomial family taken to be 1.19442)
=20
    Null deviance: 515.115  on 35  degrees of freedom
Residual deviance:  35.047  on 27  degrees of freedom
AIC: NA
=20
Number of Fisher Scoring iterations: 17
=20
# note the standard error of the firast interaction term =3D 2365)
=20
# add a single failure to one replicate
=20
y2<-y
y2[17,]<-c(23,1)
model2<-glm(y2~antibio*toxin,quasibinomial)
summary(model2)
=20
Call:
glm(formula =3D y2 ~ antibio * toxin, family =3D quasibinomial)
=20
Deviance Residuals:=20
   Min      1Q  Median      3Q     Max=20=20
-2.044  -0.627  -0.221   0.709   2.000=20=20
=20
Coefficients:
                           Estimate Std. Error   t value Pr(>|t|)=20=20=20=
=20
(Intercept)              -2.901e+00  5.251e-01    -5.526 7.44e-06 ***
antibiobcock              5.035e-01  6.737e-01     0.747    0.461=20=20=20=
=20
antibiocamp              -4.058e-18  7.426e-01 -5.47e-18    1.000=20=20=20=
=20
toxinCry1Ab               2.818e+00  5.747e-01     4.904 3.94e-05 ***
toxinVip3A                3.840e+00  5.857e-01     6.556 4.96e-07 ***
antibiobcock:toxinCry1Ab  4.134e+00  1.352e+00     3.057    0.005 **=20
antibiocamp:toxinCry1Ab  -4.721e-01  8.153e-01    -0.579    0.567=20=20=20=
=20
antibiobcock:toxinVip3A  -2.868e-01  7.720e-01    -0.372    0.713=20=20=20=
=20
antibiocamp:toxinVip3A    2.748e-01  8.341e-01     0.329    0.744=20=20=20=
=20
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1=20
=20
(Dispersion parameter for quasibinomial family taken to be 1.306703)
=20
    Null deviance: 506.602  on 35  degrees of freedom
Residual deviance:  37.851  on 27  degrees of freedom
AIC: NA
=20
Number of Fisher Scoring iterations: 5
=20
#   Now the standard errors are all well-behaved
=20

=20

	[[alternative HTML version deleted]]



More information about the R-devel mailing list