[Rd] by() processing on a dataframe
Peter Dalgaard
p.dalgaard at biostat.ku.dk
Fri Sep 30 19:41:52 CEST 2005
Duncan Murdoch <murdoch at stats.uwo.ca> writes:
> I want to calculate a statistic on a number of subgroups of a dataframe,
> then put the results into a dataframe. (What SAS PROC MEANS does, I
> think, though it's been years since I used it.)
>
> This is possible using by(), but it seems cumbersome and fragile. Is
> there a more straightforward way than this?
>
> Here's a simple example showing my current strategy:
>
> > dataset <- data.frame(gp1 = rep(1:2, c(4,4)), gp2 = rep(1:4,
> c(2,2,2,2)), value = rnorm(8))
> > dataset
> gp1 gp2 value
> 1 1 1 0.9493232
> 2 1 1 -0.0474712
> 3 1 2 -0.6808021
> 4 1 2 1.9894999
> 5 2 3 2.0154786
> 6 2 3 0.4333056
> 7 2 4 -0.4746228
> 8 2 4 0.6017522
> >
> > handleonegroup <- function(subset) data.frame(gp1 = subset$gp1[1],
> + gp2 = subset$gp2[1], statistic = mean(subset$value))
> >
> > bylist <- by(dataset, list(dataset$gp1, dataset$gp2), handleonegroup)
> >
> > result <- do.call('rbind', bylist)
> > result
> gp1 gp2 statistic
> 1 1 1 0.45092598
> 11 1 2 0.65434890
> 12 2 3 1.22439210
> 13 2 4 0.06356469
>
> tapply() is inappropriate because I don't have all possible combinations
> of gp1 and gp2 values, only some of them:
>
> > tapply(dataset$value, list(dataset$gp1, dataset$gp2), mean)
> 1 2 3 4
> 1 0.450926 0.6543489 NA NA
> 2 NA NA 1.224392 0.06356469
>
>
>
> In the real case, I only have a very sparse subset of all the
> combinations, and tapply() and by() both die for lack of memory.
>
> Any suggestions on how to do what I want, without using SAS?
Have you tried aggregate()?
Alternatively, you migth split on interaction(...., drop=TRUE)
--
O__ ---- Peter Dalgaard Øster Farimagsgade 5, Entr.B
c/ /'_ --- Dept. of Biostatistics PO Box 2099, 1014 Cph. K
(*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk) FAX: (+45) 35327907
More information about the R-devel
mailing list