[Rd] about mantelhaen.test (PR#7779)

chienyu at stat.sinica.edu.tw chienyu at stat.sinica.edu.tw
Thu Apr 7 10:51:41 CEST 2005


Full_Name: Chien-yu Peng
Version: 2.0.1
OS: Windows XP Professional
Submission from: (NULL) (140.109.72.181)


Dear all:
     Although I don't know you, I am thankful for your help.
     When I use the function mantelhaen.test for R x C x K (R, C > 2) table,
the output is not the same as SAS's. I don't know that the result consist with
one of SAS's. But it works correctly for 2 x 2 x K table.
In addition, the function mantelhaen.test does not contain such as test for
general association, test for row means scores differ, and test for nonzero
correlation in SAS.

Could you tell me "Is it something wrong in the function (mantelhaen.test) for R
x C x K (R, C > 2) table"?

Therefore, I modify part of the function such that output looks as the same as
SASs.

mh.test <- function(x) {         
    if (any(apply(x, 3, sum) < 2)) 
        stop("sample size in each stratum must be > 1")
    I <- dim(x)[1];    J <- dim(x)[2];    K <- dim(x)[3]
    df_GMH <- (I - 1) * (J - 1);    df_SMH <- I - 1;    df_CSMH <- 1
    A_GMH <- cbind(diag(I-1), 0) %x% cbind(diag(J-1), 0)
    A_SMH <- cbind(diag(I-1), 0) %x% t(1:J)
    A_CSMH <- t(1:I) %x% t(1:J)
    Y_GMH <- matrix(0, nc = 1, nr = df_GMH)
    Y_SMH <- matrix(0, nc = 1, nr = df_SMH)
    Y_CSMH <- matrix(0, nc = 1, nr = df_CSMH)
    S_GMH <- matrix(0, nc = df_GMH, nr = df_GMH)
    S_SMH <- matrix(0, nc = df_SMH, nr = df_SMH)
    S_CSMH <- matrix(0, nc = df_CSMH, nr = df_CSMH)
    for(k in 1:K) {
        V <- NULL
        f <- x[, , k]
        ntot <- sum(f)
        p_ip <- apply(f, 1, sum) / ntot
        p_pj <- apply(f, 2, sum) / ntot
        m <- p_ip %x% p_pj * ntot
        V <- ntot^2 * ((diag(p_ip) - p_ip %*% t(p_ip)) %x% (diag(p_pj) - p_pj
%*% t(p_pj))) / (ntot-1)
        Y_GMH <- Y_GMH + A_GMH %*% (c(t(f)) - m)
        Y_SMH <- Y_SMH + A_SMH %*% (c(t(f)) - m)
        Y_CSMH <- Y_CSMH + A_CSMH %*% (c(t(f)) - m)
        S_GMH <- S_GMH + A_GMH %*% V %*% t(A_GMH)
        S_SMH <- S_SMH + A_SMH %*% V %*% t(A_SMH)
        S_CSMH <- S_CSMH + A_CSMH %*% V %*% t(A_CSMH)
    }
    Q_GMH <- t(Y_GMH) %*% solve(S_GMH) %*% Y_GMH
    Q_SMH <- t(Y_SMH) %*% solve(S_SMH) %*% Y_SMH
    Q_CSMH <- t(Y_CSMH) %*% solve(S_CSMH) %*% Y_CSMH
    STATISTIC <- c(Q_CSMH, Q_SMH, Q_GMH)
    PARAMETER <- c(df_CSMH, df_SMH, df_GMH)
    PVAL <- pchisq(STATISTIC, PARAMETER, lower = FALSE)
    result <- cbind(STATISTIC, PARAMETER, PVAL)
    rownames(result) <- list("Nonzero Correlation", "Row Mean Scores Differ",
"General Association")
    colnames(result) <- list("Statistic", "df", "p-value")
    return (result)
}

x <- array(c(23,23,20,24,7,10,13,10,2,5,5,6,18,18,13,9,6,6,13,15,1,2,2,2,8,12,11,7,6,4,6,7,3,4,2,4,12,15,14,13,9,3,8,6,1,2,3,4),
dim = c(4,3,4))

mh.test(x)
                       Statistic df    p-value
Nonzero Correlation      6.34043  1 0.01180163
Row Mean Scores Differ   6.59013  3 0.08617498
General Association     10.59828  6 0.10161441



More information about the R-devel mailing list