[Rd] Accuracy: Correct sums in rowSums(), colSums() (PR#6196)
Nick.Efthymiou at schwab.com
Nick.Efthymiou at schwab.com
Tue Dec 30 01:57:20 MET 2003
Full_Name: Nick Efthymiou
Version: R1.5.0 and above
OS: Red Hat Linux
Submission from: (NULL) (162.93.14.73)
With the introduction of the functions rowSums(), colSums(), rowMeans() and
colMeans() in R1.5.0, function "SEXP do_colsum(SEXP call, SEXP op, SEXP args,
SEXP rho)" was added to perform the fast summations. We have an excellent
opportunity to improve the accuracy by implementing Kahan summation here.
Kahan summation is described in
@article{ goldberg91what,
author = "David Goldberg",
title = "What Every Computer Scientist Should Know About Floating-Point
Arithmetic",
journal = "ACM Computing Surveys",
volume = "23",
number = "1",
pages = "5--48",
year = "1991",
url = "citeseer.nj.nec.com/goldberg91what.html" }
(http://citeseer.nj.nec.com/goldberg91what.html)
and in the article "Floating-point Summation", by Evan Manning, in C/C++ User's
Journal, Sept. 1996.
The proposed improvement has been tested in !IEEE_754 mode, the patch is
attached.
It is intended to be applied against R-1.7.1/src/main/array.c
--------- Cut here ----------
*** array.c.old Mon Dec 15 17:33:23 2003
--- array.c Mon Dec 15 17:33:45 2003
***************
*** 1016,1022 ****
int OP, n, p, cnt = 0, i, j, type;
Rboolean NaRm, keepNA;
int *ix;
! double *rx, sum = 0.0;
checkArity(op, args);
x = CAR(args); args = CDR(args);
--- 1016,1022 ----
int OP, n, p, cnt = 0, i, j, type;
Rboolean NaRm, keepNA;
int *ix;
! double *rx, sum = 0.0, correction = 0.0;
checkArity(op, args);
x = CAR(args); args = CDR(args);
***************
*** 1046,1062 ****
switch (type) {
case REALSXP:
rx = REAL(x) + n*j;
#ifdef IEEE_754
if (keepNA)
! for (sum = 0., i = 0; i < n; i++) sum += *rx++;
else {
! for (cnt = 0, sum = 0., i = 0; i < n; i++, rx++)
! if (!ISNAN(*rx)) {cnt++; sum += *rx;}
else if (keepNA) {sum = NA_REAL; break;}
}
#else
! for (cnt = 0, sum = 0., i = 0; i < n; i++, rx++)
! if (!ISNAN(*rx)) {cnt++; sum += *rx;}
else if (keepNA) {sum = NA_REAL; break;}
#endif
break;
--- 1046,1082 ----
switch (type) {
case REALSXP:
rx = REAL(x) + n*j;
+ sum = 0.;
#ifdef IEEE_754
if (keepNA)
! for (i = 0; i < n; i++) sum += *rx++;
else {
! for (cnt = 0, i = 0; i < n; i++, rx++)
! if (!ISNAN(*rx)) {
! /* TODO: Kahan summation */
! cnt++; sum += *rx;
! }
else if (keepNA) {sum = NA_REAL; break;}
}
#else
! i = cnt = 0;
! if (i < n) {
! if (ISNAN(*rx)) {
! if (keepNA) {sum = NA_REAL; break /* switch */;}
! } else {
! cnt++; sum = *rx;
! }
! i++; rx++;
! }
! for (; i < n; i++, rx++)
! if (!ISNAN(*rx)) {
! /* Kahan summation */
! double yhilo = *rx - correction;
! double tsum = sum + yhilo;
! correction = (tsum - sum) - yhilo;
! sum = tsum;
! cnt++;
! }
else if (keepNA) {sum = NA_REAL; break;}
#endif
break;
***************
*** 1121,1137 ****
switch (type) {
case REALSXP:
rx = REAL(x) + i;
#ifdef IEEE_754
if (keepNA)
! for (sum = 0., j = 0; j < p; j++, rx += n) sum += *rx;
else {
! for (cnt = 0, sum = 0., j = 0; j < p; j++, rx += n)
! if (!ISNAN(*rx)) {cnt++; sum += *rx;}
else if (keepNA) {sum = NA_REAL; break;}
}
#else
! for (cnt = 0, sum = 0., j = 0; j < p; j++, rx += n)
! if (!ISNAN(*rx)) {cnt++; sum += *rx;}
else if (keepNA) {sum = NA_REAL; break;}
#endif
break;
--- 1141,1177 ----
switch (type) {
case REALSXP:
rx = REAL(x) + i;
+ sum = 0.;
#ifdef IEEE_754
if (keepNA)
! for (j = 0; j < p; j++, rx += n) sum += *rx;
else {
! for (cnt = 0, j = 0; j < p; j++, rx += n)
! if (!ISNAN(*rx)) {
! /* TODO: Kahan summation */
! cnt++; sum += *rx;
! }
else if (keepNA) {sum = NA_REAL; break;}
}
#else
! j = cnt = 0;
! if (j < p) {
! if (ISNAN(*rx)) {
! if (keepNA) {sum = NA_REAL; break /* switch */;}
! } else {
! cnt++; sum = *rx;
! }
! j++; rx += n;
! }
! for (; j < p; j++, rx += n)
! if (!ISNAN(*rx)) {
! /* Kahan summation */
! double yhilo = *rx - correction;
! double tsum = sum + yhilo;
! correction = (tsum - sum) - yhilo;
! sum = tsum;
! cnt++;
! }
else if (keepNA) {sum = NA_REAL; break;}
#endif
break;
---------end of patch -------
Since someone is certainly wondering why I bothered to bring this up - I was
trying to optimize the order of a Chebyshev approximation to a specific function
so that I accomplish the most power-efficient calculation at one ulp accuracy
(multiplications and additions consume battery power). The optimization was
based on minimizing the relative error between the true function and the
approximation. It involved a lot of sums and was not converging properly. With
the patch, I got the convergence I needed.
Thanks,
- Nick -
More information about the R-devel
mailing list