performance of apply

Douglas Bates bates@stat.wisc.edu
29 May 1998 09:05:40 -0500


Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at> writes:

> I noticed that apply is VERY SLOW when applied to a "large"
> dimension as for example when computing the row sums of a matrix with
> thousands of rows.
> 
> To demonstrate it, I did some benchmarking for different methods of
> computing the row sums of an nx10 matrix with n =3D 2000, ..., 10000.
> 
> The first method (M1) I used is the normal apply command:
> 	y <- apply(x,1,sum)
> The second method (M2) uses a for-loop for the computations, where the
> memory for the resulting vector has been allocated before. That is, for
> n=3D2000:
> 	z <- numeric(2000); for (i in 1:2000) z[i] <- sum(x[i,])
> The third method (M3) also uses a for-loop, but the resulting vector
> is built recursively, i.e.
> 	z1 <- NULL; for (i in 1:2000) z1 <- c(z1,sum(x[i,]))
> 
> All computations have been made on a Pentium II 233MHz, 256MB, R
> started as R -v 50. The following table shows the minimum, mean, and
> maximum CPU-time in seconds as measured by system.time over 10 runs
> for every computation for different values of n.
> 
> n	M1			M2		M3
> 2000	 4.03  4.16   4.34	0.27 0.40 0.47	0.51 0.63 0.71
> 4000	12.65 13.40  14.68	0.73 0.81 0.94	1.78 1.86 1.98
> 6000	26.51 28.14  29.50	1.19 1.22 1.38	3.79 3.80 3.80
> 8000	52.06 63.43  67.61	1.46 1.63 1.69	6.38 6.41 6.58
> 10000	84.06 98.17 118.94	1.93 2.01 2.13  9.78 9.79 9.81
> 
> That is, the computation of the sums of the rows of a 10000x10 matrix
> with apply takes about 100sec on average, where a simple for-loop does
> the same job in about 2sec.

There would be at least two other methods that would be interesting to
try.  Because you are interested in the row sums I imagine by far the
fastest method would be (M4)
   y <- x %*% rep(1, ncol(x))
You may also find that (M5)
   y <- apply( t(x), 2, sum )
would be faster than M1 because of the way the R handles arrays.

We should keep in mind when looking at these tables that the maximum
time on the size 10000 case is about 2 minutes.  If the computation is
worth doing it may be worth waiting 2 minutes for the result.  I
remember the days of running S version 2 (i.e. the version before "New
S") on a Vax-11/750.  This sort of computation could take many, many
hours on the only computer in the department so relative differences
in speed for different methods were a lot more important.  One got
used to rephrasing computations in "efficient" ways.  Today I think
that clarity is usually more important than efficiency.
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body", not the subject !)  To: r-devel-request@stat.math.ethz.ch
_._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._