R-alpha: New Incomplete Beta Function
Ross Ihaka
ihaka@stat.auckland.ac.nz
Wed, 30 Apr 1997 16:56:08 +1200 (NZST)
Here is a drop-in replacement for the R incomplete beta function.
src/math/pbeta.c
It is a slightly modified version of the cephes library one from
Netlib. In the few cases I tried it seems to give at least 14
digit agreement with the one in S-PLUS (its hard to get more).
I'm not sure what performance is like. I'd like to know if it
helps with some of the problems which have been reported for the
t and F code in R.
If it works It'll be in an official second patch for 0.49 later in
the week (so just swap it temporarily with the old one).
Ross
- - s n i p - - h e r e - -
/*
* Incomplete Beta Integral
*
* Taken from Cephes Math Library, Release 2.3: March, 1995
* Copyright 1984, 1995 by Stephen L. Moshier
* Changes for R : Copyright 1997 by Ross Ihaka
*/
#include <math.h>
#include <float.h>
#include <errno.h>
static double incbcf(), incbd(), pseries();
static double big = 4.503599627370496e15;
static double biginv = 2.22044604925031308085e-16;
double pbeta(double xx, double aa, double bb)
{
double a, b, t, x, xc, w, y;
int flag;
if (aa <= 0 || bb <= 0)
goto domerr;
if (xx <= 0 || xx >= 1) {
if (xx == 0)
return 0;
if (xx == 1)
return 1;
domerr:
errno = EDOM;
return 0;
}
flag = 0;
if (bb * xx <= 1 && xx <= 0.95) {
t = pseries(aa, bb, xx);
goto done;
}
w = 1 - xx;
/* Reverse a and b if x is greater than the mean. */
if (xx > (aa / (aa + bb))) {
flag = 1;
a = bb;
b = aa;
xc = xx;
x = w;
} else {
a = aa;
b = bb;
xc = w;
x = xx;
}
if (flag == 1 && (b * x) <= 1 && x <= 0.95) {
t = pseries(a, b, x);
goto done;
}
/* Choose expansion for better convergence. */
y = x * (a + b - 2) - (a - 1);
if (y < 0)
w = incbcf(a, b, x);
else
w = incbd(a, b, x) / xc;
/* Multiply w by the factor
a b _ _ _
x (1-x) | (a+b) / ( a | (a) | (b) ) . */
y = a * log(x);
t = b * log(xc);
/* Resort to logarithms. */
y += t + lgamma(a + b) - lgamma(a) - lgamma(b);
y += log(w / a);
t = exp(y);
done:
if (flag == 1) {
if (t <= DBL_EPSILON)
t = 1 - DBL_EPSILON;
else
t = 1 - t;
}
return t;
}
/* Continued fraction expansion #1
* for incomplete beta integral
*/
static double incbcf(double a, double b, double x)
{
double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
double k1, k2, k3, k4, k5, k6, k7, k8;
double r, t, ans, thresh;
int n;
k1 = a;
k2 = a + b;
k3 = a;
k4 = a + 1;
k5 = 1;
k6 = b - 1;
k7 = k4;
k8 = a + 2;
pkm2 = 0;
qkm2 = 1;
pkm1 = 1;
qkm1 = 1;
ans = 1;
r = 1;
n = 0;
thresh = 3 * DBL_EPSILON;
do {
xk = -(x * k1 * k2) / (k3 * k4);
pk = pkm1 + pkm2 * xk;
qk = qkm1 + qkm2 * xk;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
xk = (x * k5 * k6) / (k7 * k8);
pk = pkm1 + pkm2 * xk;
qk = qkm1 + qkm2 * xk;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (qk != 0)
r = pk / qk;
if (r != 0) {
t = fabs((ans - r) / r);
ans = r;
} else
t = 1;
if (t < thresh)
goto cdone;
k1 += 1;
k2 += 1;
k3 += 2;
k4 += 2;
k5 += 1;
k6 -= 1;
k7 += 2;
k8 += 2;
if ((fabs(qk) + fabs(pk)) > big) {
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
if ((fabs(qk) < biginv) || (fabs(pk) < biginv)) {
pkm2 *= big;
pkm1 *= big;
qkm2 *= big;
qkm1 *= big;
}
}
while (++n < 300);
cdone:
return ans;
}
/* Continued fraction expansion #2
* for incomplete beta integral
*/
static double incbd(double a, double b, double x)
{
double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
double k1, k2, k3, k4, k5, k6, k7, k8;
double r, t, ans, z, thresh;
int n;
k1 = a;
k2 = b - 1;
k3 = a;
k4 = a + 1;
k5 = 1;
k6 = a + b;
k7 = a + 1;
k8 = a + 2;
pkm2 = 0;
qkm2 = 1;
pkm1 = 1;
qkm1 = 1;
z = x / (1 - x);
ans = 1;
r = 1;
n = 0;
thresh = 3 * DBL_EPSILON;
do {
xk = -(z * k1 * k2) / (k3 * k4);
pk = pkm1 + pkm2 * xk;
qk = qkm1 + qkm2 * xk;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
xk = (z * k5 * k6) / (k7 * k8);
pk = pkm1 + pkm2 * xk;
qk = qkm1 + qkm2 * xk;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (qk != 0)
r = pk / qk;
if (r != 0) {
t = fabs((ans - r) / r);
ans = r;
} else
t = 1;
if (t < thresh)
goto cdone;
k1 += 1;
k2 -= 1;
k3 += 2;
k4 += 2;
k5 += 1;
k6 += 1;
k7 += 2;
k8 += 2;
if ((fabs(qk) + fabs(pk)) > big) {
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
if ((fabs(qk) < biginv) || (fabs(pk) < biginv)) {
pkm2 *= big;
pkm1 *= big;
qkm2 *= big;
qkm1 *= big;
}
}
while (++n < 300);
cdone:
return ans;
}
/* Power series for incomplete beta integral.
Use when b*x is small and x not too close to 1. */
static double pseries(double a, double b, double x)
{
double s, t, u, v, n, t1, z, ai;
ai = 1 / a;
u = (1 - b) * x;
v = u / (a + 1);
t1 = v;
t = u;
n = 2;
s = 0;
z = DBL_EPSILON * ai;
while (fabs(v) > z) {
u = (n - b) * x / n;
t *= u;
v = t / (a + n);
s += v;
n += 1;
}
s += t1;
s += ai;
u = a * log(x);
t = lgamma(a + b) - lgamma(a) - lgamma(b) + u + log(s);
s = exp(t);
return s;
}
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body", not the subject !) To: r-devel-request@stat.math.ethz.ch
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-