
1 The penalized likelihood

Assume the read counts for gene g and sample i, Ygi, follows negative binomial distribution with
mean νgi and dispersion φg. Under this parametrization the probability mass function for Ygi can
be derived as:

P (Ygi = y|νgi, φg) =
Γ(y + φ−1

g )

y!Γ(φ−1
g )

(
1

1 + νgiφg

)φ−1
g
(

νgiφg
1 + νgiφg

)y
We assume a log-normal prior on φg, e.g., φg ∼ log-normal(m0, τ

2), with density function:

f(φg) =
1

φg
√

2πτ2
e−

(log(φg)−m0)2

2τ2

Then the conditional posterior distribution for φg given all counts and means is

p(φg|Ygi, νgi, i = 1, . . . , n) ∝ f(φg)
∏
i

P (Ygi|νgi, φg).

The logarithm of the posterior distribution is proportional to∑
i

ψ(φ−1
g + Ygi)− nψ(φ−1

g )− φ−1
g

∑
i

log(1 + νgiφg)

+
∑
i

Ygi[log(νgiφg)− log(1 + νgiφg)]

− [log(φg)−m0]2

2τ2
− log(φg)− log(τ),

as shown in Equation 4.1 in the paper.

2 Moment estimator of dispersion parameter

Given Ygi ∼ NB(siµg,k(i), φg), we have

E[Ygi] = siµg,k(i), E[Y 2
gi] = siµg,k(i) + (φg + 1)s2iµ

2
g,k(i), V ar(Ygi) = siµg,k(i) + φgs

2
iµ

2
g,k(i).

Define a new random variable zgi ≡
Y 2
gi−Ygi
s2i

, we have

E[zgi] = (E[Ygi]2 − E[Ygi])/s2i = µ2
g,k(i)(φg + 1).

Equate the observed and expected first moment, we have:∑
i

zgi =
∑
i

[µ2
g,k(i)(φg + 1)] = (φg + 1)

∑
i

µ2
g,k(i),

which leads to an estimator for φg as: φ̂g =
P
i zgiP

i µ̂
2
g,k(i)

− 1, where µ̂g,k(i) =
P
j:k(j)=k(i) Ygj/sj

nk(i)
is the

estimate of µg,k(i) defined in Section 4 of the paper.
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3 Derivation of the Wald statistic

The variance of the estimated group 1 mean, µ̂g,1, can be derived as:

V ar(µ̂g,1) =
1
n2

1

∑
j:k(j)=1

(
µg,1
sj

+ φgµ
2
g,1

)
=

1
n2

1

µg,1
 ∑
j:k(j)=1

1
sj

+ n1µ
2
g,1φg

 ,
which can be estimated by

1
n2

1

µ̂g,1
 ∑
j:k(j)=1

1
sj

+ n1µ̂
2
g,1φ̃g

 .
With this result, the Wald test statistics can be constructed in the typical way.

4 Simulation settings

Extensive simulations were conducted to evaluate the performance of DE detection of the proposed
method. To make the simulations more realistic, simulation parameters are mainly derived from
real data (Gilad and Cheung data). In all simulations, the library sizes and mean expressions
were randomly sampled from those calculated from real data. The dispersions were generated
from parametric distributions with parameters computed from real data.

To be specific, we first estimate the dispersions from Gilad or Cheung data. Then under para-
metric assumptions that these estimated dispersions are from log-normal or Gamma distributions,
the distribution parameters were calculated based on logarithm dispersions. Under log-normal
assumption, we have φg ∼ logN(−2.70, 1.442) from Gilad, and φg ∼ logN(−1.72, 1.072) from Che-
ung data. Under Gamma distribution assumption, the distributions for φg are Gamma(0.48, 0.31)
from Gilad and Gamma(0.21, 1.73) from Cheung data. These distributions were used to generate
φg’s in the simulations. Using different parametric model to generate φg demonstrates the ro-
bustness of the proposed method. Expressions of 20000 genes were generated in most simulations
except for Figure 3, where 2000 genes were considered to make the simulation scenario identical
to that in Robinson and Smyth (2007). All simulations were performed for two treatment groups
with 5% of the genes assumed to be differentially expressed. Data were generated for 4 replicates
in each treatment group.
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5 Validation of simulated data

Figure S1 compares the estimated dispersions from the Cheung data and the simulated data based
on the Cheung data and under log-normal dispersion. The two histograms appear very similar,
indicating that the simulated data mimic the real data well in the distribution of φ.

(a) Cheung et al. data

Estimated dispersion
0 1 2 3 4

(b) Simulated, log−normal

Estimated dispersion
0 1 2 3 4

Figure S1: Histograms of estimated dispersions from (a) the Cheung data set; and (b) simulated
data using log normal dispersion, with parameters estimated from Cheung data.
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6 Dispersion estimates from different methods

Figure 1 in the paper compares the dispersion estimates from different methods, stratified by mean
counts. Figure S2 below shows the same results, but different strata were plotted separately in
different panels.
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(c) DSS: Mean count < 5
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(c) DSS: Mean count in [5,20)

True dispersion

E
st

im
at

ed
 d

is
pe

rs
io

n

0.005 0.050 0.500 5.000

0.
00

5
0.

05
0

0.
50

0
5.

00
0

(c) DSS: Mean count > 20

True dispersion

E
st

im
at

ed
 d

is
pe

rs
io

n

0.005 0.050 0.500 5.000

0.
00

5
0.

05
0

0.
50

0
5.

00
0

Figure S2: Comparison of dispersion estimates from different methods, stratified by mean counts.
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7 Comparison of MSEs of dispersion estimates

Figure 3 in the paper shows the comparison of distribution of MSE for dispersion estimations
from edgeR, DESeq and DSS over 50 simulations. Below Figure S3 shows the similar comparison,
but genes are stratified by the true means under three strata: µ < 5, 5 ≤ µ < 50, µ ≥ 50. DSS
provides the best performance in all strata.
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(d) φ ~ Gamma(0.85,0.5), n=10, µ<5
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Figure S3: Boxplots comparing distribution of MSE for dispersion estimations from edgeR, DESeq
and DSS over 50 simulations. Simulation settings are the same as for Figure 3 in the paper. Genes
are stratified by mean, and boxplots are generated for all strata.
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8 Dispersion estimates from edgeR using different options

There are several parameters in the function estimateTagwiseDisp from edgeR to estimate the
dispersions from data, some with a finite number of options (for example, trend has three options,
method has two options) and some are tuning parameters (for example, prior.n, prop.used,

grid.length) (The default settings are trend="movingave", prop.used=0.3, method="grid").
We tested on a few flavors in addition to the default setting. Figure S4 shows the estimated versus
true dispersions under different settings.
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Figure S4: Dispersion estimates from edgeR under different options. The title of each sub-panel
indicates the deviation from the default setting.
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9 Comparison of DE detection using ROC curves

Figure 4 in the paper compares DE detection accuracies from different methods. ROC curves
from the same simulations are shown in Figure S5.
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Figure S5: ROC curves for comparing DE detection results from DSS, edgeR and DESeq. The
curves are averaged ROC from 50 simulations. All simulations are based on 20000 genes, and 5%
of the genes are true DE. Dispersion are generated from log-normal distributions (Figures a and
b) or Gamma (Figures c and d). Parameters for dispersion distributions were estimated from real
data (Gilad for Figures a and c, Cheung for Figures b and d).
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10 Additional simulation for DE detection

We performed additional simulations to compare the performances of DSS, DESeq and edgeR.
The general simulation settings are as described in previous section. The only differences in sim-
ulations are the way to generate dispersions. We presented four additional simulations here. The
gene-specific dispersions were generated from log-normal or Gamma distributions with different
parameters. In all four simulations the average dispersions levels are roughly the same, but the
variances of dispersions are different. The distributions used for generating dispersions are listed
in Table S1.

φg distribution E[φg] V ar[φg]

Sim 1 logN(−1.5, 0.52) 0.25 0.018
Sim 2 logN(−2.5, 1.52) 0.25 0.51
Sim 3 Gamma(5, 0.05) 0.25 0.013
Sim 4 Gamma(0.25, 1) 0.25 0.25

Table S1: Distributions for φg in additional simulations.

The DE detection results for these simulations are shown in Figures S6 and S7. When the
variation in dispersion is large, DSS provides better DE results than other methods.
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Figure S6: DE detection accuracies from additional simulations. φg were generated from log-
normal (a and b) or Gamma distributions (c and d) with different parameters. The mean disper-
sions are roughly identical from all simulations, whereas the variance of dispersions are different.
It can be seen that when the variation in dispersion is large DSS provides better performance.
The curves are average from 50 simulations.
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Figure S7: ROC curves from the same additional simulations as in Figure S6.
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11 FDR estimation from other simulation settings

Figure S8 shows the comparison of true and reported FDR curves from simulations presented in
the paper. In general DSS provides reasonable FDR estimations.
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Figure S8: FDR estimation from different simulation settings. In all figures the solid curves repre-
sent the true FDR. The dashed curves represent the reported FDR. All curves are averaged from
50 simulations. Simulation settings are the same as described before. Dispersion are generated
from log-normal distributions (Figures a and b) or Gamma (Figures c and d). Parameters for
dispersion distributions were estimated from real data (Gilad for Figures a and c, Cheung for
Figures b and d).

11



12 Comparison of Wald and exact tests

For two class comparison, DESeq and edgeR both provide the exact test functions: nbinomTest

(DESeq) and exactTest(edgeR). DSS uses Wald test. We compared the performance of Wald
and the exact test under our simulation settings, and found that both tests provide comparable
results. Figure S9 shows the comparisons of DE detection accuracies from the simulation based on
the Cheung data, with dispersions from Gamma distribution. The left panel shows DE detection
accuracies from each method, and the right panel presents the results using DSS’s dispersion
estimates in all tests. It shows that both Wald and exact tests provide almost identical results,
indicating that most of the improvement in DE detection is due to better dispersion estimation.
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Figure S9: Comparison of Wald and exact tests from simulation. Data are simulated based on
Cheung data, with dispersions from Gamma distribution. Left panel shows the DE detection
accuracies from each method using their own dispersion estimates. Right panel shows results
from using DSS’s dispersion estimates.
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13 Information of φ depends on the mean in NB distribution

To understand how much information about the dispersion parameter φ is available in the data
with a small number of replicates, we simulated NB random variables with expectation ranging
from 0.5 to 30 and φ at three levels. We use the ratio between sample variance and sample mean
as an indicator of “observable overdispersion”. The sampling distribution of this ratio is shown
in boxplots. As expected, when φ = 0 the ratio is centered around 1 for all mean levels. For NB
random variable with mean as high as 30, the impact of φ on the ratio is obvious. For NB random
variables with means less than 5, the ratio appear very similar whether there is overdispersion or
not. In other words, the data provide little information about φ.
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Figure S10: Boxplot of the ratio sample variance
sample mean for NB random variables at various expectations

and dispersions. Sample size is 8 and 100 samples taken at each parameter setting. When the
dispersion parameter φ = 0.05, the ratio sample variance

sample mean in NB random variables may appear
similar to Poisson random variables. Even when the dispersion parameter is φ = 0.10, the NB
random variable is not easily distinguishable from Poisson distribution with mean up to 5.
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14 Simulation results based on MAQC data

We obtained another RNA-seq dataset generated by the MicroArray Quality Control Project [1]
phase III, also known as Sequencing Quality Control (SEQC). In this experiment two biological
samples, human brain and universal human reference sample (UHR), are assayed using seven
lanes each. The MAQC data use samples from the same library preparation protocols so that
there is little biological variation and the data can be considered as technical replicates.

We conducted simulations based on the MAQC data. The procedures are the same as in
simulations based on other (Gilad and Cheung) data. Figure S11 compares the DE detection
results. It shows that the three methods provide comparable results.
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Figure S11: DE detection results from MAQC data. (a) and (b) show the percent of top ranked
genes being true DE. (c) and (d) show the ROC curves. (a) and (c) assume the dispersions are
from log-normal distribution. (b) and (d) assume the dispersions are from Gamma distribution.
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15 DE detection from MAQC using qRT-PCR as gold standard

Quantitative real-time polymerase chain reaction (qRT-PCR) data are available for 992 genes
from the MAQC experiment. These data were used as gold standard for comparing the DE
detection results from different methods. To be specific, we first compute the log fold changes
between the average expression measures for UHR and brain. Then a genes is called “DE” if
the absolute value of log fold changes is greater than 2, or “non-DE” is the absolute value of log
fold changes is less than 0.2. Under these criteria there are 312 DE genes and 159 non-DE genes.
Using these as gold standard, the comparison of DE detections from DSS, edgeR and DESeq are
shown in Figure S12. It can be seen that DSS provides better results.

However a deeper study of the results reveals that from all three methods, the estimated
dispersions (φ̃g) are at the lower boundary for most genes. This is not surprising since the
samples in MAQC data are technical replicates and possess very little biological variations. Thus
the difference in DE detection results are in fact caused by different lower bound of φ̃g used in
different algorithm, (the lower bounds are 0.01 in DSS, 0.001 in edgeR and 10−8 in DESeq).
Although these results cannot be interpreted as in favor of DSS, it does show that assuming a
not-too-small minimum dispersion improves DE detection.
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Figure S12: Comparison of DE detection results from MAQC data using Taqman qRT-PCR as
gold standard. (a) ROC curve. (b) Percentage of top ranked genes being true DE.

15



16 Estimating Trended dispersion

There have been some reports that the dispersion may depend on the mean expression level.
DESeq[2] models the variance as a smooth function of the mean. EdgeR [3, 4, 5] provides sev-
eral methods to estimate the trend, using either a moving average smoother or locally weighted
approximate conditional likelihood. The common feature is to treat the dispersion as a smooth
function of the average expression. We account for the possible dependence between φ and mean
expression by allowing the hyper-parameter m0 to be a smooth function of µg. First we divide
the genes into strata of average expression level and estimate a m̂0i for the i − th stratum non-
parametrically. We then use a smoothing spline to estimate the relationship m̂0(µg) and let each
gene have its own prior expectation of dispersion.

We illustrate the trended estimation in Figure S13 in a simulation of 5 vs 5 comparison A
linear trend between log(φ) and log mean expression is imposed in the simulation, as shown in
red. The edgeR estimates are shrunk heavily towards the mean (Figure S13B) and the DEseq
essentially sets a lower bound for φ (Figure S13C). The DSS estimates reflect the trend and shrink
genes with low counts more heavily. Figure S14 show the comparison between estimated and true
dispersion in the simulation. As seen in Figure 1 in the main text, the estimates from DSS show
better concordance with the truth.
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Figure S13: Mean-dependent dispersion. A. True dispersion φ plotted against true log expression
used in simulation. The simulation includes 52580 genes (as seen in reCount human RNAseq
data) and 10 samples, and mean expression level are simulated based on the Cheung data. A
linear trend between log(φ) and log mean expression µ is imposed in the simulation, shown as the
red line in all panels. Specifically, log(φ)|µ ∼ N(−0.3µ − 0.3, 1). Genes with all zero counts are
excluded in analysis. B. Estimated dispersion from edgeR versus mean expression. C. Estimated
dispersion from DESeq versus mean expression. D. Estimated dispersion from DSS versus mean
expression.
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Figure S14: Mean-dependent dispersion estimation. Estimated dispersion plotted against true
dispersion for A. edgeR, B. DESeq and C. DSS. The results are from the simulation as described
in Figure S13.
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