[BioC] combat error message
Natasha [guest]
guest at bioconductor.org
Thu May 15 17:11:32 CEST 2014
Dear List,
I have a microarray dataset with 30 samples which I have normalised using the vsn function.
>From this data, clustering and PCA plots show that I appear to have chip and batch effects which I would like to account for using combat. However, when I try to account for the batch effect, I get an error that I do not follow.
The code I have used is below:
=========
> chip
# 1 2 2 3 1 3 3 2 3 2 3 1 2 2 1 2 3 1 3 1 3 1 2 3 3 1 1 1 3 2
> group
# a_Cont a_Cont a_Cont a_1 a_1 a_1 a_2 a_2 a_2 a_3 a_3 a_3 a_4 a_4 a_4 b_Cont b_Cont b_Cont b_1 b_1 b_1 b_2 b_2 b_2 b_3 b_3 b_3 b_4 b_4 b_4
# Levels: a_Cont a_1 a_2 a_3 a_4 b_Cont b_1 b_2 b_3 b_4
> mod = model.matrix(~as.factor(group))
> combat.c = ComBat(dat=d.norm, batch=chip, mod=mod, numCovs=NULL, par.prior=TRUE, prior.plots=FALSE)
# Found 3 batches
# Found 9 categorical covariate(s)
# Standardizing Data across genes
# Fitting L/S model and finding priors
# Finding parametric adjustments
# Adjusting the Data
### Combat to get rid of batch effect
> day2
# 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5
>mod #same as above
> combat.b = ComBat(dat=combat.c, batch=day2, mod=mod, numCovs=NULL, par.prior=TRUE, prior.plots=FALSE)
# Found 5 batches
# Found 9 categorical covariate(s)
# Standardizing Data across genes
####### Error in solve.default(t(design) %*% design) :
####### system is computationally singular: reciprocal condition number = 7.93016e-18
=========
Any help much appreciated.
(I do know that the R /BioC version is not the latest, but hoping that is not the case here!)
Many Thanks,
Natasha
-- output of sessionInfo():
sessionInfo()
# R version 3.0.2 (2013-09-25)
# Platform: x86_64-apple-darwin10.8.0 (64-bit)
#
# locale:
# [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
#
# attached base packages:
# [1] parallel stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] gplots_2.13.0 WriteXLS_3.5.0 limma_3.18.13 genefilter_1.44.0 sva_3.8.0 mgcv_1.7-29 nlme_3.1-117 corpcor_1.6.6
# [9] ClassDiscovery_2.14.1 PreProcess_2.12.3 oompaBase_3.0.0 mclust_4.3 cluster_1.15.2 scatterplot3d_0.3-35 gdata_2.13.3 vsn_3.30.0
# [17] Biobase_2.22.0 BiocGenerics_0.8.0
#
# loaded via a namespace (and not attached):
# [1] affy_1.40.0 affyio_1.30.0 annotate_1.40.1 AnnotationDbi_1.24.0 BiocInstaller_1.12.1 bitops_1.0-6 caTools_1.17 DBI_0.2-7
# [9] grid_3.0.2 gtools_3.4.0 IRanges_1.20.7 KernSmooth_2.23-12 lattice_0.20-29 Matrix_1.1-3 preprocessCore_1.24.0 RSQLite_0.11.4
# [17] splines_3.0.2 stats4_3.0.2 survival_2.37-7 tools_3.0.2 XML_3.95-0.2 xtable_1.7-3 zlibbioc_1.8.0
--
Sent via the guest posting facility at bioconductor.org.
More information about the Bioconductor
mailing list