[BioC] Best way of presenting "absolute" expression values (edgeR)
Sindre Lee
sindre.lee at studmed.uio.no
Fri May 9 04:18:06 CEST 2014
Hi!
We want to classify a new type of glands by ranking genes by expression
level using RNAseq. We don't have any good controls, so we just want to
see a ranked list of genes.
I have used Cufflinks RPKM values, but if I want to use edgeR, is this
a valid way of doing it using featureCounts:
fc <- featureCounts(files=targets$Targets,nthreads=8,
isGTFAnnotationFile=TRUE, GTF.attrType="gene_id",
GTF.featureType="exon", useMetaFeatures=TRUE, annot.ext="genes.gtf")
x <- DGEList(counts=fc$counts, genes=fc$annotation)
expr <- calcNormFactors(x)
expr_norm <- rpkm(expr, log=FALSE,gene.length=x$genes$Length) # Getting
gene length from FeatureCounts, using rkpm() in the edgeR package, not
Rsubread..
Then just write out this table..
Thanks!
More information about the Bioconductor
mailing list