[BioC] DESeq2 : interactions ?

Yvan Wenger yvan.wenger at unige.ch
Thu May 1 11:57:07 CEST 2014


Dear list members,

There must be something I missed. I have an RNA-seq timecourse
experiment with triplicates (see below), there are two conditions: H5
and H8, they can be thought of control/treatment.

I am trying to assess if some genes react differently over time
between the two conditions. I use the code below with:

full model: design = ~ time + condition + time:condition
reduced model: reduced = ~ time + condition

Out of 33'000 genes, I find 732 with interaction between time and
condition (FDR < 0.1). Nice.

The problem, some genes that I was expecting to appear in this dataset
do not (see the attached pdf for example, I am only concerned with
differences in H5 and H8). Furthermore, when looking at the FDR of
this gene, I can see that it is very far from being significant, the
FDR is 0.97 !

So I think I am doing something wrong in the way I compare the full
model and the reduce model, probably I am not analyzing the data the
way I want. To recapitulate, what I would like to select are different
behaviours over time between the two conditions.

Many thanks for your inputs !

Yvan




library(DESeq2)

countData <- read.table("counts_all.txt",row.names=1,header=T)
countData_H58 <- countData[,31:90]   ### data from table 1 to 30 are
from another condition not considered here.
colData_H58 <- as.data.frame(read.table(file='conditions_H58'))   ###
content of the conditions_H58 file pasted below
dds_H58 <- DESeqDataSetFromMatrix(countData = countData_H58,colData =
colData_H58, design = ~ time + condition + time:condition) ### Full
model
dds_H58 <- estimateSizeFactors(dds_H58)
dds_H58 <- estimateDispersions(dds_H58)
write.table(file="normacounts_H58.csv", counts(dds_H58,normalized=TRUE))
ddsLRT_H58 <- nbinomLRT(dds_H58, reduced = ~ time + condition) ### reduced model
res_H58 <- results(ddsLRT_H58,cooksCutoff=FALSE)
write.table(res_H58,file='results_H58.csv',sep="\t",quote=F)



condition    time
031_H5_000C    H5    0
032_H5_000A    H5    0
033_H5_000B    H5    0
034_H5_005C    H5    0.5
035_H5_005A    H5    0.5
036_H5_005B    H5    0.5
037_H5_010C    H5    1
038_H5_010A    H5    1
039_H5_010B    H5    1
040_H5_020C    H5    2
041_H5_020A    H5    2
042_H5_020B    H5    2
043_H5_040C    H5    4
044_H5_040A    H5    4
045_H5_040B    H5    4
046_H5_080C    H5    8
047_H5_080A    H5    8
048_H5_080B    H5    8
049_H5_160C    H5    16
050_H5_160A    H5    16
051_H5_160B    H5    16
052_H5_240C    H5    24
053_H5_240A    H5    24
054_H5_240B    H5    24
055_H5_360C    H5    36
056_H5_360A    H5    36
057_H5_360A    H5    36
058_H5_480B    H5    48
059_H5_480C    H5    48
060_H5_480A    H5    48
061_H8_000B    H8    0
062_H8_000C    H8    0
063_H8_000A    H8    0
064_H8_005B    H8    0.5
065_H8_005C    H8    0.5
066_H8_005A    H8    0.5
067_H8_010B    H8    1
068_H8_010C    H8    1
069_H8_010A    H8    1
070_H8_020B    H8    2
071_H8_020C    H8    2
072_H8_020A    H8    2
073_H8_040B    H8    4
074_H8_040C    H8    4
075_H8_040A    H8    4
076_H8_080B    H8    8
077_H8_080C    H8    8
078_H8_080A    H8    8
079_H8_160B    H8    16
080_H8_160C    H8    16
081_H8_160A    H8    16
082_H8_240B    H8    24
083_H8_240C    H8    24
084_H8_240A    H8    24
085_H8_360A    H8    36
086_H8_360B    H8    36
087_H8_360C    H8    36
088_H8_480A    H8    48
089_H8_480B    H8    48
090_H8_480C    H8    48




> sessionInfo()
R version 3.1.0 (2014-04-10)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C
 [9] LC_ADDRESS=C               LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods
[8] base

other attached packages:
[1] DESeq2_1.4.0              RcppArmadillo_0.4.100.2.1
[3] Rcpp_0.11.1               GenomicRanges_1.16.1
[5] GenomeInfoDb_1.0.2        IRanges_1.22.3
[7] BiocGenerics_0.10.0

loaded via a namespace (and not attached):
 [1] annotate_1.42.0      AnnotationDbi_1.26.0 Biobase_2.24.0
 [4] DBI_0.2-7            genefilter_1.46.0    geneplotter_1.42.0
 [7] grid_3.1.0           lattice_0.20-29      locfit_1.5-9.1
[10] RColorBrewer_1.0-5   RSQLite_0.11.4       splines_3.1.0
[13] stats4_3.1.0         survival_2.37-7      tools_3.1.0
[16] XML_3.98-1.1         xtable_1.7-3         XVector_0.4.0
-------------- next part --------------
A non-text attachment was scrubbed...
Name: seq68770.pdf
Type: application/pdf
Size: 6450 bytes
Desc: not available
URL: <https://stat.ethz.ch/pipermail/bioconductor/attachments/20140501/ea132f21/attachment.pdf>


More information about the Bioconductor mailing list