[BioC] design matrix Limma design for paired t-test

Ingrid Mercier Ingrid.Mercier at ipbs.fr
Wed Jun 13 14:46:20 CEST 2012


Thanks a lot Belinda !!

I mistaked so I replaced Time=Treat by Time only, and it's good.
So, I have a last question : I 'm confused with the differents coef in 
topTable.
I get genes but I tested several coef without understanding their 
significance.
Somebody can explain me what mean coef="TreatT", or coef= "Time18",coef= 
" Donor5",coef= " Donor6", coef= "Donor7",coef= " Donor8".
My main objective is to identidy the differential expressed genes 
between the Control donors and Treated Donors at 4 hours or 18 hours.
I have no idea, which coef I have to use it.

Cheers,

Ingrid

Ingrid MERCIER
Mycobacterial Interactions with Host Cells Team
Institute of Pharmacology&  Structural Biology
CNRS - University of Toulouse
BP 64182
F-31077 Toulouse Cedex France
Tel +33 (0)5 61 17 54 63




Le 13/06/2012 08:45, Belinda Phipson a écrit :
> Hi Ingrid
>
> The problem with your code is the following line:
>>   Time=Treat=factor(Targets$Time)
> Where you essentially set the time factor equal to the treat factor.
>
> Cheers,
> Belinda
>
>
> -----Original Message-----
> From: bioconductor-bounces at r-project.org
> [mailto:bioconductor-bounces at r-project.org] On Behalf Of Ingrid Mercier
> Sent: Wednesday, 13 June 2012 1:02 AM
> To: bioconductor at r-project.org; smyth at wehi.edu.au
> Subject: [BioC] design matrix Limma design for paired t-test
>
> Dear list and Gordon,
>
> I have some troubles to computed a moderated paired t-test in the linear
> model.
> Here is my experimental plan :
>
> I used a single channel Agilent microarray.
> 2 types of cells : Control (S) and Treated (T)
> Fives human donors : 4-5-6-7-8
> Two times of treatment : 4 hours and 18 hours
>
> I want to compare teh differential expresed genes between my C versus T at 4
> hours and then at 18 hours.
>
> Here is my design :
>
>
> My targets frame is :
>>   Targets
>            X                                           FileName Treatment
> Donor Time
> 1   DC_4_4 US10463851_252665214446_S01_GE1_1010_Sep10_1_2.txt         T
> 4    4
> 2   SC_4_4 US10463851_252665214448_S01_GE1_1010_Sep10_1_2.txt         C
> 4    4
> 3  DC_18_4 US10463851_252665214447_S01_GE1_1010_Sep10_1_2.txt         T
> 4   18
> 4  SC_18_4 US10463851_252665214444_S01_GE1_1010_Sep10_1_3.txt         C
> 4   18
> 5   DC_4_5 US10463851_252665214448_S01_GE1_1010_Sep10_1_4.txt         T
> 5    4
> 6   SC_4_5 US10463851_252665214444_S01_GE1_1010_Sep10_1_1.txt         C
> 5    4
> 7  DC_18_5 US10463851_252665214446_S01_GE1_1010_Sep10_1_3.txt         T
> 5   18
> 8  SC_18_5 US10463851_252665214447_S01_GE1_1010_Sep10_1_4.txt         C
> 5   18
> 9   DC_4_6 US10463851_252665214445_S01_GE1_1010_Sep10_1_4.txt         T
> 6    4
> 10  SC_4_6 US10463851_252665214447_S01_GE1_1010_Sep10_1_3.txt         C
> 6    4
> 11 DC_18_6 US10463851_252665214448_S01_GE1_1010_Sep10_1_3.txt         T
> 6   18
> 12 SC_18_6 US10463851_252665214445_S01_GE1_1010_Sep10_1_3.txt         C
> 6   18
> 13  DC_4_7 US10463851_252665214444_S01_GE1_1010_Sep10_1_4.txt         T
> 7    4
> 14  SC_4_7 US10463851_252665214445_S01_GE1_1010_Sep10_1_2.txt         C
> 7    4
> 15 DC_18_7 US10463851_252665214447_S01_GE1_1010_Sep10_1_1.txt         T
> 7   18
> 16 SC_18_7 US10463851_252665214446_S01_GE1_1010_Sep10_1_1.txt         C
> 7   18
> 17  DC_4_8 US10463851_252665214444_S01_GE1_1010_Sep10_1_2.txt         T
> 8    4
> 18  SC_4_8 US10463851_252665214446_S01_GE1_1010_Sep10_1_4.txt         C
> 8    4
> 19 DC_18_8 US10463851_252665214445_S01_GE1_1010_Sep10_1_1.txt         T
> 8   18
> 20 SC_18_8 US10463851_252665214448_S01_GE1_1010_Sep10_1_1.txt         C
> 8   18
>
>
> then I create my design matrix :
>
>>   Donor
>    [1] 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8
> Levels: 4 5 6 7 8
>>   Treat=factor(Targets$Treatment,levels=c("C","T"))
>>   Treat
>    [1] T C T C T C T C T C T C T C T C T C T C
> Levels: C T
>>   Time=Treat=factor(Targets$Time)
>>   Time
>    [1] 4  4  18 18 4  4  18 18 4  4  18 18 4  4  18 18 4  4  18 18
> Levels: 4 18
>
>>   design=model.matrix(~Donor+Treat+Time)
>>   design
>      (Intercept) Donor5 Donor6 Donor7 Donor8 Treat18 Time18
> 1            1      0      0      0      0       0      0
> 2            1      0      0      0      0       0      0
> 3            1      0      0      0      0       1      1
> 4            1      0      0      0      0       1      1
> 5            1      1      0      0      0       0      0
> 6            1      1      0      0      0       0      0
> 7            1      1      0      0      0       1      1
> 8            1      1      0      0      0       1      1
> 9            1      0      1      0      0       0      0
> 10           1      0      1      0      0       0      0
> 11           1      0      1      0      0       1      1
> 12           1      0      1      0      0       1      1
> 13           1      0      0      1      0       0      0
> 14           1      0      0      1      0       0      0
> 15           1      0      0      1      0       1      1
> 16           1      0      0      1      0       1      1
> 17           1      0      0      0      1       0      0
> 18           1      0      0      0      1       0      0
> 19           1      0      0      0      1       1      1
> 20           1      0      0      0      1       1      1
> attr(,"assign")
> [1] 0 1 1 1 1 2 3
> attr(,"contrasts")
> attr(,"contrasts")$Donor
> [1] "contr.treatment"
>
> attr(,"contrasts")$Treat
> [1] "contr.treatment"
>
> attr(,"contrasts")$Time
> [1] "contr.treatment"
>
>
> In this design matrix I think something is wrong, because of the column
> Treat18 is the same as Time18.
> I don't understand why.
> So, the following code failed, and the differential expressed genes are
> odds.
>
> Somebody can help me !!! Thanks all.
>
>
>>   fit=lmFit(test_norm,design)
> Coefficients not estimable: Time18
> Message d'avis :
> Partial NA coefficients for 34183 probe(s)
>>   fit2=eBayes(fit)
> Message d'avis :
> In ebayes(fit = fit, proportion = proportion, stdev.coef.lim =
> stdev.coef.lim,  :
>     Estimation of var.prior failed - set to default value
>
>
>>   table = topTable(fit2,1, number=5000,
> p.value=0.05,adjust.method="BH",sort.by="logFC",lfc=2)
>>   head(table)
>                    ID    logFC  AveExpr         t      P.Value    adj.P.Val
> B
> 6509  A_33_P3396434 18.44159 18.41239 245.14490 1.308161e-31 2.353520e-28
> 53.41519
> 22398 A_33_P3223592 18.25824 18.24591 242.75647 1.545005e-31 2.514901e-28
> 53.36821
> 10771 A_33_P3244165 18.21029 18.02229  90.76191 2.796577e-24 2.467615e-23
> 44.59915
> 6149  A_33_P3346552 18.14780 18.12098 207.18556 2.282464e-30 1.147374e-27
> 52.50960
> 23554 A_33_P3210160 18.08158 18.21026 239.64192 1.924175e-31 2.560908e-28
> 53.30521
> 20924 A_33_P3286278 18.04425 18.07312 179.72121 2.558128e-29 5.025546e-27
> 51.56876
>
>
> Best,
>
> Ingrid
>
>



More information about the Bioconductor mailing list