[BioC] GoStats
David martin
vilanew at gmail.com
Tue Mar 29 15:33:15 CEST 2011
Hi ,
I'm a bit confused in the way of using my data.
My input is a list of genes( in fact a list of targeted genes for
microRNAs). The first step is to get the GoTerms associated to these
genes and then i would like to do hyperg to obtain significant
dysregulated Goterms. ALl the examples i went through use affy data or
so so i'm not sure this is correct. I would appreciate your feedback
library("GOstats")
library("GSEABase")
library(org.Hs.eg.db)
data="genes.txt" # A list of genes ( "MED13" "ENDOD1" "RAP2C"
"ACSL1" ...)
g=read.table(file=data)
genes <- as.character(g[,1])
# Get Mapping to GO
frame<-merge(toTable(org.Hs.egALIAS2EG[genes]), toTable(org.Hs.egGO),
by.x= "gene_id", by.y="gene_id")
goframeData = data.frame(frame$go_id, frame$Evidence, frame$gene_id)
goFrame = GOFrame(goframeData, organism = "Homo sapiens")
goAllFrame = GOAllFrame(goFrame)
#From here i'm a bit confused. Since i have my list of Goterms do i need
to use the universe data ?? or do i apply a hyperg on the above data.
Thanks for your input.
gsc <- GeneSetCollection(goAllFrame, setType = GOCollection())
universe = Lkeys(org.Hs.egGO)
params <- GSEAGOHyperGParams(name = "My Custom GSEA based annot
Params",geneSetCollection = gsc, geneIds = unique(frame$gene_id),
universeGeneIds = universe,ontology = "BP", pvalueCutoff = 0.05,
conditional = FALSE,testDirection = "over")
More information about the Bioconductor
mailing list