[BioC] The units for limma toptable logFC and AveExpr?
Ying Chen
Ying.Chen at imclone.com
Thu Jul 14 18:15:17 CEST 2011
Hi guys,
I am new to the limma package. I read the user's guide and it says the logFC and AveExpr are log2 values.
I just tried a test run and found logFC and AveExpr values are really high. For example, following are the values for probe 6733_at (affy HT_HG-U133_Plus_PM custom CDF probe):
ID logFC AveExpr t P.Value adj.P.Val B
14512 6773_at 45.31332 71.14588 27.48457 3.475838e-04 0.5899933 -3.490399
But when I look at the RMAed data before lmFit:
B02.cel c03.cel c04.cel e04.cel
X6733_at 96.87915039 253.5151215 256.6256409 96.09108734
B02 and e04 are responders, while c03 and c04 are non-responders. For toptable, coef="RESPONDERvsNON_RESPONDER".
RMA was done in aroma.affymetrix because I want to use custom CDF.
>From RMAed data, the ratio or fold change should be less than 3. How come after lmFit, the logFC is about 45?
What did I do wrong?
Thanks a lot for the help!
Ying
> library(aroma.affymetrix)
> ces <- doRMA("Gastric", chipType="HT_HG-U133_Plus_PM,Binary,v14,Hs_ENTREZG", verbose=-5)
> ces
> eset <- extractExpressionSet(ces, verbose=-5)
> library(limma)
> targets <- readTargets("Gastric_Target.txt")
> targets
Name FileName Response
1 GAF-087-P6 5500254086008100810456_B02.CEL YES
2 GAF-023-P9 5500254086008100810456_C03.CEL NO
3 GAM-016-P10 5500254086008100810456_C04.CEL NO
4 GAM-022-P4 5500254086008100810456_E04.CEL YES
> design <- cbind(NON_RESPONDER=1,RESPONDERvsNON_RESPONDER=targets$Response=="YES")
> design
NON_RESPONDER RESPONDERvsNON_RESPONDER
[1,] 1 1
[2,] 1 0
[3,] 1 0
[4,] 1 1
> fit <- lmFit(eset,design)
> fit <- eBayes(fit)
> topTable(fit,coef="RESPONDERvsNON_RESPONDER")
ID logFC AveExpr t P.Value adj.P.Val B
14481 6733_at -158.58526 175.77775 -76.42590 2.658827e-05 0.5027575 -3.483194
14881 7266_at -191.56808 498.79973 -55.97116 5.819986e-05 0.5502506 -3.484123
11418 54809_at 126.55865 120.14789 37.65200 1.576701e-04 0.5899933 -3.486542
8501 3429_at 3047.52215 1585.64249 36.09129 1.753662e-04 0.5899933 -3.486931
12470 56623_at -54.64022 98.54923 -32.38532 2.302226e-04 0.5899933 -3.488091
8143 3156_at -192.12436 243.72574 -32.15756 2.343398e-04 0.5899933 -3.488176
2949 1286_at -73.42559 47.14983 -30.94777 2.580292e-04 0.5899933 -3.488657
9626 4259_at -1587.50317 1495.69604 -30.48283 2.680259e-04 0.5899933 -3.488857
5704 23312_at 71.01854 104.03263 28.82746 3.083598e-04 0.5899933 -3.489649
14512 6773_at 45.31332 71.14588 27.48457 3.475838e-04 0.5899933 -3.490399
> write.table(topTable(fit,coef="RESPONDERvsNON_RESPONDER",n=18910),"Gastric_ENTREZG_toptable.txt",sep="\t")
Confidentiality Note:\ This e-mail, and any attachment t...{{dropped:11}}
More information about the Bioconductor
mailing list