[BioC] Differential expression ( Limma) for illumina microarrays?
Mohamed Lajnef
Mohamed.lajnef at inserm.fr
Tue Jul 7 18:04:34 CEST 2009
Dear R-Users,
I can not uderstand a result I have ( see Toptable). I used LIMMA to
find differentially expressed genes by 3 treatments, my database (
illumina files) includes (48803 probes (rows) and 120 columns ( 40 by
level)), my program as follows
library(beadarray)
BSData<-readBeadSummaryData(fichier,skip=0,columns = list(exprs =
"AVG_Signal", se.exprs="BEAD_STDERR",NoBeads = "Avg_NBEADS",
Detection="Detection.Pval"))
BSData.quantile=normaliseIllumina(BSData,
method="quantile",transform="log2") #
detection<-Detection(BSData) # Matrix contain detection P value which
estimates the probability of a probe being detected above the background
level
# Filtring after normalization
library(genefilter)
filtre<-function (p = 0.05, A = 100, na.rm = TRUE)
{
function(x) {
if (na.rm)
x <- x[!is.na(x)]
sum(x <= A)/length(x) >= p
}
}
ff<-filtre(p=0.80, A=0.01) # i keep rows if pvalues<=0.01, the probe has
to be over expressed in at least 80% per level ( i have 3 levels)
i<-genefilter(detection[,1:40],ff)
j<-genefilter(detection[,41:80],ff) # I will now keep 10156 probes
(after filtring tools)
k<-genefilter(detection[,81:120],ff)
# Differential expression using Limma after normalization & filtering tools
library(limma)
donne<-exprs(BSData.quantile)
OBSnormfilter<-donne[j,] # keep 10156 probes after normalization
groups<-as.factor(c(rep("Tem",40),rep("EarlyO",40),rep("LateO",40)))
design<-model.matrix(~0+groups)
colnames(design)=levels(groups)
fit<-lmFit(OBSnormfilter,design)
cont.matrix<-makeContrasts(Tem-EarlyO,Tem-LateO,EarlyO-LateO,
levels=design)
fit2<-contrasts.fit(fit, cont.matrix)
ebfit<-eBayes(fit2)
gene1<-topTable(ebfit, coef=1)
gene2<-topTable(ebfit, coef=2)
gene3<-topTable(ebfit, coef=3)
gene1 ( result of Toptable between the control and first treatment groups)
ID logFC AveExpr t
P.Value adj.P.Val B
9300 520255 -0.3209704 6.429487 -3.643323 0.0003963748 0.9998062 -0.6345996
6192 7650097 -0.2677064 6.243968 -3.581163 0.0004921590 0.9998062 -0.7817435
5528 10161 0.2022500 8.002581 3.434507 0.0008116961 0.9998062 -1.1212432
6077 4180725 0.1380486 5.922805 3.423087 0.0008434258 0.9998062 -1.1472217
3569 5080487 -0.1621675 7.717032 -3.308604 0.0012326133 0.9998062 -1.4039040
2265 270332 -0.1996710 6.599011 -3.257771 0.0014545247 0.9998062 -1.5156669
4643 5360301 0.5115730 6.616680 3.188442 0.0018176145 0.9998062 -1.6658702
3885 110523 -0.1489957 6.165416 -3.130799 0.0021819409 0.9998062 -1.7887772
8220 6280053 -0.1379738 6.603755 -3.057891 0.0027397895 0.9998062 -1.9416230
4355 1430626 -0.1867890 6.624203 -3.054026 0.0027727561 0.9998062 -1.9496424
looking at the results, Toptable show no any signficant genes, how do
you explain this?? ( because I have a lot of replication ( 40 by level) ???)
Any help would be appreciated
Regards
ML
--
Mohamed Lajnef
INSERM Unité 955.
40 rue de Mesly. 94000 Créteil.
Courriel : Mohamed.lajnef at inserm.fr
tel. : 01 49 81 31 31 (poste 18470)
Sec : 01 49 81 32 90
fax : 01 49 81 30 99
More information about the Bioconductor
mailing list