[BioC] limma help - choosing an approach

Naomi Altman naomi at stat.psu.edu
Fri Sep 15 04:05:55 CEST 2006


I don't think that the single channel analysis is experimental.  It 
follows the rules of mixed model analysis which has been around for a 
very long time.

Any set of contrasts is statistically valid.  The question is which 
ones may be biologically meaningful.  And that depends in part on the 
biological process.
E.g. often contrasts among time points with the same concentration 
and concentrations with the same time point may be of most 
interest.  But if the chemical slows the cell metabolism by a factor 
of 4, you might want to do contrasts of concentration 1 time 1 with 
concentration 2 time 4 etc.

--Naomi

At 06:19 AM 9/14/2006, you wrote:

>Hello Naomi (and anyone else)
>
>Thanks again for your help. It has  been extremely helpful. Almost there
>I think, though I am still just doing it on autopilot and not quite sure
>how meaningful this is. I am slightly worried by the limma documentation
>which describes the single channel analysis as "experimental" so
>combined with my lack of understanding makes me feel quite uncertain.
>Anyway I can run it now and pull out lists of genes - though what they
>mean I am not sure yet.
>
>So, a bit of sanity checking if that is OK.
>
> > a) I needed to build my targets from a list of treatments for red and
>gree.
>
>I guess these are equivalent to Cy5 and Cy3 with Genepix. The function
>"targetsC<-targetsA2C(targets)" converts it to single channel format.
>(See targets files below, showing before and after).
>
>
> >b) The design matrix will have more than 4 columns, as you have 3
> >levels of concentration.  So there are 2 columns for concentration
> >and 2 for time:concentration.
>
>I have altered the targets file to reflect this better.
>
>So now my code looks like:
>
>Time<-targetsC$Time
>Conc<-targetsC$Target
>Time<-factor(Time, levels=c("t1", "t4"))
>Conc<-factor(Conc, levels=c("c0", "c20", "c100"))
>
>
>Giving:
>
> > Time
>  [1] t1 t1 t4 t4 t4 t4 t1 t1 t1 t1 t4 t4 t1 t1 t1 t1 t4 t4 t4 t4 t4 t4
>t1 t1 t4 t4 t1 t1 t1 t1
>Levels: t1 t4
> > Conc
>  [1] c100 c0   c20  c0   c100 c0   c20  c0   c20  c0   c20  c0   c20  c0
>c100 c0   c20  c0   c20  c0   c100 c0   c100 c0   c100 c0
>[27] c100 c0   c20  c0
>Levels: c0 c20 c100
> >
>
>Set up the design file:
>
>design<-model.matrix(~Time + Conc + Time:Conc)
>
>Giving (first three lines):
>
>    (Intercept) Timet4 Concc20 Concc100 Timet4:Concc20 Timet4:Concc100
>1            1      0       0        1              0               0
>2            1      0       0        0              0               0
>
>
>colnames(design)<-c("Intercept", "t4", "c20", "c100", "t4c20", "t4c100")
>
>
>corfit<-intraspotCorrelation(MA.nba, design)
>fit<-lmscFit(MA.nba, design, correlation=corfit$consensus)
>
>
># contrast matrix
>contrast.matrix<-makeContrasts(t4, c20, c100, t4c20, t4c100,
>levels=design)
>
>(What is possible here? What sort of contrasts are valid/meaningful?
>Presumably I could do c20 + c100 to compare against c0?).
>
>
>
># contrast timepoints and controls
>fit2<- contrasts.fit(fit, contrast.matrix)
>
>
># eBayes
>eb<- eBayes(fit2)
>
>
>ngenes<-20
>topa1<-topTable(eb, coef=1, number=ngenes, adjust="none", sort.by="M")
>
>.....
>
>
>
>
>Regards
>
>
>John Seers
>
>
>
>Targets data before transforming using targetsA2C
>
>
>SlideNumber     FileName        Cy3     Cy5     Time
>598     598new.gpr      c100    c0      t1
>599     599new.gpr      c20     c0      t4
>600     600new.gpr      c100    c0      t4
>617     617new.gpr      c20     c0      t1
>621     621new.gpr      c20     c0      t1
>637     637new.gpr      c20     c0      t4
>638     638new.gpr      c20     c0      t1
>639     639new.gpr      c100    c0      t1
>748     748new.gpr      c20     c0      t4
>751     751new.gpr      c20     c0      t4
>833     833new.gpr      c100    c0      t4
>835     835new.gpr      c100    c0      t1
>836     836new.gpr      c100    c0      t4
>957     957new.gpr      c100    c0      t1
>958     958new.gpr      c20     c0      t1
>
>Targets data after transforming using targetsA2C
>
>
> > targetsC
>          channel.col SlideNumber   FileName Time Target
>598new.1           1         598 598new.gpr   t1   c100
>598new.2           2         598 598new.gpr   t1     c0
>599new.1           1         599 599new.gpr   t4    c20
>599new.2           2         599 599new.gpr   t4     c0
>600new.1           1         600 600new.gpr   t4   c100
>600new.2           2         600 600new.gpr   t4     c0
>617new.1           1         617 617new.gpr   t1    c20
>617new.2           2         617 617new.gpr   t1     c0
>621new.1           1         621 621new.gpr   t1    c20
>621new.2           2         621 621new.gpr   t1     c0
>637new.1           1         637 637new.gpr   t4    c20
>637new.2           2         637 637new.gpr   t4     c0
>638new.1           1         638 638new.gpr   t1    c20
>638new.2           2         638 638new.gpr   t1     c0
>639new.1           1         639 639new.gpr   t1   c100
>639new.2           2         639 639new.gpr   t1     c0
>748new.1           1         748 748new.gpr   t4    c20
>748new.2           2         748 748new.gpr   t4     c0
>751new.1           1         751 751new.gpr   t4    c20
>751new.2           2         751 751new.gpr   t4     c0
>833new.1           1         833 833new.gpr   t4   c100
>833new.2           2         833 833new.gpr   t4     c0
>835new.1           1         835 835new.gpr   t1   c100
>835new.2           2         835 835new.gpr   t1     c0
>836new.1           1         836 836new.gpr   t4   c100
>836new.2           2         836 836new.gpr   t4     c0
>957new.1           1         957 957new.gpr   t1   c100
>957new.2           2         957 957new.gpr   t1     c0
>958new.1           1         958 958new.gpr   t1    c20
>958new.2           2         958 958new.gpr   t1     c0
> >
>
>
>
>
>---
>
>John Seers
>Institute of Food Research
>Norwich Research Park
>Colney
>Norwich
>NR4 7UA
>
>
>tel +44 (0)1603 251497
>fax +44 (0)1603 507723
>e-mail john.seers at bbsrc.ac.uk
>e-disclaimer at http://www.ifr.ac.uk/edisclaimer/
>
>Web sites:
>
>www.ifr.ac.uk
>www.foodandhealthnetwork.com

Naomi S. Altman                                814-865-3791 (voice)
Associate Professor
Dept. of Statistics                              814-863-7114 (fax)
Penn State University                         814-865-1348 (Statistics)
University Park, PA 16802-2111



More information about the Bioconductor mailing list