[BioC] opposite signs in limma
Jihoon Kim
jihoon at stat.wisc.edu
Tue Aug 2 21:16:14 CEST 2005
Dear Dr.Smyth,
I'm struggling with limma to apply it to two-group microarray data.
I thought ebayes() in limma shrinks the variance but not the "sign"
of the original t-statistic. However, example code resulted in opposite
signs of the moderated T statistic and the mean difference
in the gene 1(or the row 1).
I tried to follow example code in limma.
What seems to be problem here?
Thank you in advance.
Best,
Jihoon Kim
--------------------------------------------------------------
library(limma)
exprVec <- c(
1.5522, 1.6881, 1.0798, 1.3877, 0.8566, 1.4138,
1.5729 , 1.3380, 2.2301, 1.8566, 2.0400 , 1.6191,
-1.6955, -1.2777, -1.4938, -1.7326, -1.5530, -1.7169,
-0.1812, 0.0399, 0.0413, -0.3797, -0.4582, -0.6490,
-0.3439, -0.2067, -0.0792, 0.0549, -0.1200, 0.4584,
-0.2357, -0.5873, -0.0446, -0.1868, 0.2710, -0.2091,
-0.5146, -0.1384, -0.1525 , 0.0089, 0.5896, 0.2688,
0.2017, 0.1631, -0.1724, -0.5886, -0.1346, -0.3309 )
Mat <- matrix( exprVec, nrow=4, ncol=12, byrow=TRUE)
design.eb <- cbind( time1=c( rep(1, 6), rep(0, 6)),
time2=c( rep(0, 6), rep(1, 6)) )
fit <- lm.series(Mat, design=design.eb)
eb <- ebayes(fit)
modT <- eb$t[,1]
meanDiff <- rep(0, 4)
for(i in 1:3) {
meanDiff[i] <- mean( Mat[i, 1:6] ) - mean( Mat[i, 7:12] )
}
cbind(modT, meanDiff)
plot(1:12, Mat[1,], type="b")
More information about the Bioconductor
mailing list