[BioC] limma - background correct method=none
Helen Cattan
helen.cattan at jenner.ac.uk
Mon Apr 19 11:44:39 CEST 2004
Hi,
The bit of code I listed is using the default background correction
which is subtraction - which I did on my manually altered files so B635
and B532 were zero. A bit further down the email I (hope I) explained
that I included in the code RG=backgroundCorrect(RG, method="none")
before the normalizations which should change the default background
correction and I used my original .gpr files for this. I provided the
top 5 for both of these examples. The first top table I gave were my
results for my altered files with default background correction and the
second top table was for unaltered files with background correct method
= none. The results are not the same. Sorry if my last email was unclear
- I hope this now makes sense.
Helen
-----Original Message-----
From: Gordon Smyth [mailto:smyth at wehi.edu.au]
Sent: 18 April 2004 23:28
To: Helen Cattan
Cc: bioconductor at stat.math.ethz.ch
Subject: Re: [BioC] limma - background correct method=none
At 06:50 AM 19/04/2004, Helen Cattan wrote:
> Hi,
>
>I have been looking at backgroundCorrect, method=none in limma and
>compared this to files I have manually altered so that the background
>values were zero, without using the backgroundCorrect method. I thought
>that these would produce the same results but they were very different
>- could anyone explain why to me please?
They do produce the same results.
> Code is below.
The code example you give below uses the default background correction
which is subtraction, so you have not given an example of what you claim
above.
Gordon
>Thanks,
>Helen
>
> > library(limma)
> > files=dir(pattern="*\\.gpr")
> > RG=read.maimages(files, columns=list(Rf="F635 Median", Gf="F532
>Median", Rb="B635
> > names(RG)
> > RG$genes=readGAL()
> > RG$printer=getLayout(RG$genes)
> > samples=read.table("sampleinformationa.txt", header=TRUE, sep="\t",
>as.is=TRUE)
> > samples
> > spottypes=readSpotTypes() RG$genes$Status=controlStatus(spottypes,
> > RG)
> > MA1=normalizeWithinArrays(RG)
> > MA2=normalizeBetweenArrays(MA1)
> > design=c(1,-1)
> > cor=dupcor.series(MA2$M, design, ndups=2, spacing=1) cor$cor
> > fit=gls.series(MA2$M,design,ndups=2,correlation=0.7628949)
> > eb=ebayes(fit)
> > genenames=uniquegenelist(RG$genes, ndups=2)
> > ord=order(eb$lods, decreasing=TRUE)
> > toptable(number=30,genelist=genenames,fit=fit,eb=eb,adjust="fdr")
> Block Row Column ID
>Name
>2986 10 24 19 209274
>H63351:Hs.203509::::3:211600
>5981 20 24 9 No_seq :Data not
>found:::::212310
>8083 27 24 13 No_seq :Data not
>found:::::211255
>2013 7 18 17 3846240 BE617901:In multiple
>clusters::::3:152735
>7492 25 25 7 No_seq :Data not
>found:::::223083
> Status M t P.Value B
>2986 cDNA 2.032293 21.15504 0.001026994 8.082774
>5981 cDNA 1.946782 17.10056 0.001115381 6.944303
>8083 cDNA 1.957218 16.81269 0.001115381 6.847414
>2013 cDNA 1.659813 15.65550 0.001115381 6.431781
>7492 cDNA 1.739500 15.31887 0.001115381 6.302453
> > top30=ord[1:30]
> > plot(fit$coef,eb$lods,xlab="Log2 Fold Change", ylab="Log
>Odds",pch=16,cex=0.1)
>
> and then included RG=backgroundCorrect(RG, method="none") without
>manually altering the files, before the normalizations and got the
>following top table. The MA plots were also very different between the
>two tests.
>
>Block Row Column ID
>Name
>4062 14 14 11 130050 R11620:Data not
>found::::0:130050
>1033 4 12 1 124297 R02202:Data not
>found::::0:124297
>1551 6 5 5 5195930 BI754638:Data not
>found::::10:39204
>6900 23 25 23 214572 H73225:In multiple
>clusters::::0:214572
>5131 18 3 13 N/A BQ025821:Data not
>found::::10:33091
> Status M t P.Value B
>4062 cDNA 2.421487 11.601562 0.1968434 -0.08869236
>1033 cDNA 1.681192 8.298373 0.1968434 -0.58215799
>1551 cDNA 1.904751 8.293908 0.1968434 -0.58312702
>6900 cDNA 2.094721 8.171346 0.1968434 -0.61016473
>5131 cDNA 2.314669 7.761475 0.1968434 -0.70707369
>
>
>
> [[alternative HTML version deleted]]
>
>_______________________________________________
>Bioconductor mailing list
>Bioconductor at stat.math.ethz.ch
>https://www.stat.math.ethz.ch/mailman/listinfo/bioconductor
More information about the Bioconductor
mailing list