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Abstract

The allele-specific expression of genes is typically questioned through RNA sequencing analyses.
However, statistical modelling of data is still under question. This BioConductor package proposes
a novel statistical method designed to test for the parent or strain specific gene expression in
the context of reciprocal crosses. This method, called ISoLDE for Integrative Statistics of alleLe
Dependent Expression, is a robust non-parametric test based on a novel criterion whose distribution
is directly learnt from the data through resampling. The main option is to use bootstrap resampling
to estimate criterion distribution. Alternatively, for datasets with only two replicates in each cross,
empirical thresholds are applied to the criterion. This vignette introduces a typical workflow with
ISoLDE and details the main theoretical aspects of the method.

ISoLDE version: 0.99.0
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1 List of terms used in this vignette

ASE Allele Specific Expression.

ASR Allele Specific Read.

raw count An ASR count obtained such as described in the 3.2.1 section.

normalized count An ASR count obtained such as described in the 3.2.1 section and then
normalized.

0 count A value of 0 in an ASR count data file or in a dataframe.

2 Introduction: what ISoLDE does

2.1 Background

In diploid cells, genetic and epigenetic factors influence the relative expression levels of the two alle-
les of a gene. The preferred allele may depend on the chromosome parental origin as for imprinted
genes, but other imbalances such as strain bias may occur. To study allele specific expression (ASE),
RNA-seq has become the standard technology but how to statistically analyze those data is still
debated.

ISoLDE is a new non-parametric statistical method for identifying genes with allele-specific ex-
pression. ISoLDE is dedicated to stranded RNA-seq experiment on hybrid samples resulting from
reciprocal parental crosses. ISoLDE has the new and useful advantage of statistically identifying
both biased and unbiased genes allowing some genes to be undetermined (see [Reynes et al.(2016)]
for more information). It aims at freeing itself from approximate modelling by the use of non para-
metric statistics whose distribution is directly learnt from the data through resampling. To this
goal, a specific criterion was designed to take into account data specificities and make the best of
biological replicates information.

ISoLDE identifies parental or strain expression biases. It requires pre-processed data that con-
sist of a matrix of allele-specific read (ASR) counts for every gene. Details on how to obtain such
counts are provided in section 3.2.1.

Normalization of data is strongly recommended, what can be achieved by other BioConductor
packages such as edgeR or DESeq (ISoLDE does NOT provide data normalization).

ISoLDE yields both graphical and textual outputs, containing lists of parental biased genes or strain
biased genes according to what you want to study.

2.2 Workflow overview

The following figure shows the workflow overview of the ISoLDE package.
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Figure 1: ISoLDE workflows

2.3 The ISoLDE package functions

The ISoLDE package includes the five functions described below.
Three functions are available for reading, loading and checking your input data:

° checks and loads into a dataframe the input file containing raw ASR counts so
that it can be input into filterT. This is only required to use the filterT function and if
your normalized data no longer contain 0 counts that are required for the filterT function.

. checks and loads into a dataframe the input file containing normalized ASR
counts so that it can be input into filterT and isolde_test.

° checks and loads into a dataframe your target input file.
Main functions:

° filters lowly expressed genes according to a data driven threshold, before any statis-
tical analysis. This step is not mandatory but strongly recommended.

° performs the statistical test (two possible options according to the number of
available biological replicates) and outputs lists of genes according to their ASE status.

3 Standard Workflow

3.1 Quick start

These are the typical steps of application of ISOLDE on filtered and normalized RNAseq data (tab-
delimited text files) where reads are assigned according to their parental origin (see section 3.2.1
for more details).

/
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> library(ISoLDE)

> rawASRcounts <- readRawInput(raw_file = "my_raw_file.txt")

> normASRcounts <- readNormInput(norm_file = "my_norm_file.txt")

> target <- readTarget(target_file = "my_target_file.txt", asr_counts = rawASRcounts)

> filteredASRcounts <- filterT(rawASRcounts = rawASRcounts, normASRcounts = normASRcounts,

target = target, bias="parental")
> res <- isolde_test(bias = "parental", asr_counts = filteredASRcounts, target = target)

For strain origin, the user has to use the strain value for argument bias in both filterT and
isolde_test.

3.2 Detailed use case of ISoLDE

3.2.1 Preliminary bioinformatics steps

ISoLDE works with pre-processed RNA-seq data obtained from hybrid species resulting from recip-
rocal crosses of two parental strains.

ISoLDE requires at least two biological replicates for each cross, but the more replicates, the more
reliable the results. Moreover, ASE cannot be questioned if RNA sequencing depth is too low and
statistical significance is improbable for low expressed transcripts.

Typical preliminary bioinformatics steps are:

e Building a hybrid reference sequence set with IUPAC ambiguous codes at SNP locations. Tools
like Novoalign (Novocraft, http://www.novocraft.com/main/index.php), with Novoutil IU-
PAC, can be used in this scope.

e Alignment of reads from the RNA-sequencing experiment on this hybrid reference sequence
set.

e Counting of the different bases at SNP positions according to their allelic origin (e.g. using
SAMtools/mpileup).

e Annotation of SNPs to sum allele-specific sense read bases across a gene or a transcript (e.g.
using Annovar).

Important: The parental origin of chromosome X genes can be assessed only with female
samples. To avoid genes that are not meaningful to test with ISoLDE, remove the chromosome X
genes from your resulting data files if your samples are not all females.

More details on preliminary steps are available in [Babak (2012)].

In this vignette, "raw counts” is used to name allele-specific sense read bases. The count file thus
obtained is called raw count file or raw ASR count file. For example, for three biological replicates
in each cross, the raw count file must contain 12 columns: three replicates X two reciprocal crosses
x two allelic origins (parental or strain). An example of such a design is shown in section 3.2.2.
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We strongly recommend use normalized counts before performing any statistical test. In our exam-
ple, counts have been normalized with the edgeR BioConductor package using the RLE normal-
ization factor.

3.2.2 Input data

The first mandatory input is an ASR counts file, depending on whether you intend to filter your
ASR counts or not, and whether you work on normalized data or not. As well as normalizing, we
strongly encourage to filter your data before statistical analysis. The raw count file is only used
in the filterT function to locate genes (or transcripts) having 0 counts in at least one column. If
your normalized data still contain 0 counts, then the raw count file is not necessary.

e Case 1 (recommended): with the ISoLDE filtering step on normalized data: The
filterT function uses raw data to determine a threshold for filtering and then applies the
filter on your normalized data. In this case, input data are both raw and normalized ASR
count files.

e Case 2 (not recommended): with the filtering step on raw data: Input data is only
a raw ASR count file. Warning: in this case, you work with non normalized data.

e Case 3 (not recommended): without the ISoLDE filtering step: Input data is an ASR
count file which has been either filtered by yourself or not, and either normalized or not.

Each ASR count file must have one line per feature (gene or transcript).

Each ASR count file must have two columns per biological sample (one for each allelic origin, such
as described in section 3.2.1). For example, for three biological replicates in each cross, the raw
count file must contain 12 columns: three replicates x two reciprocal crosses x two allelic origins
(parental or strain). Columns are delimited with a character (e.g. tabulation).

While having row names (gene or transcript names) is quite obvious, column names are not manda-
tory.

An example of normalized ASR count file obtained after loading is shown later.

Target file
The other mandatory input is a metadata file that we call "target file”. It describes the experiment
design and each column of the ASR count file contents.

It consists of three delimited columns describing your input data (raw and / or normalized ASR
count file(s) with the same structure if both are provided). Each line of the target file corresponds
to a column of the ASR count file. Lines of target file MUST be in the same order as the
columns in the input data.

The first line corresponds to the column names: sample, parent and strain.
Then, each line contains the three corresponding values, separated by a tabulation or any character.

Details of the three columns:
sample: the sample (biological replicate) name. Two lines per sample name are expected (one for
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the maternal origin and one for the paternal origin).

parent: the parental origin of the ASR count. Two possible values: maternal or paternal.
strain: the strain origin of the ASR count. Exactly two different values are expected in the whole
column.

Note: spaces and the ”:” character are forbidden in the sample and strain columns.

Here is the target file of our example. As you can see, the same sample name appears twice,
once for the maternal origin and once for the paternal origin. Do not use different names for the
same biological sample.

sample parent strain
samplel maternal BL/6
sample2 maternal BL/6
sample3 maternal BL/6
sample4 maternal BL/6
sampleb5 maternal JF1
sample6 maternal JF1
sample7 maternal JF1
samplel paternal JF1
sample2 paternal JF1
sample3 paternal JF1
sample4 paternal JF1
sampleb paternal BL/6
sample6 paternal BL/6
sample7 paternal BL/6

Reading data
ISoLDE proposes its own functions to load your input data as a data.frame. Each function in-
cludes some specific checks according to ISoLDE requirements (hence their use is recommended).

Assuming the raw ASR count file is called "my_raw_file.txt”, the normalized ASR count file
"my_norm_file.txt” and the target file ”my_target_file.txt”, reading input files simply consists of:

> rawASRcounts <- readRawInput(raw = "my_raw_file.txt")
> normASRcounts <- readNormInput(norm = "my_norm_file.txt")
> target <- readTarget(target_file = "my_target_file.txt", asr_counts = rawASRcounts)

Three data frames are obtained. The structure of the normASRcounts data frame of our example
is given below:
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> head(normASRcounts)

samplel sample?2 sample3d sample4 sampleb sample6
gene_1 299.74575562 219.3375221 244.5973016 238.414208 171.1630330 257.307921
gene_2 20.4372106 24.5894083 16.8346321 9.691634 12.3617746 16.321771
gene_3  0.9732005 0.9835763  0.9902725 0.000000 1.9018115 0.000000
gene_4 108.9984564 87.5382936 86.1537054 92.070528 113.1577829 139.215107
gene_5 0.9732005 0.0000000 2.9708174 0.000000  0.9509057 3.840417
gene_6 22.3836116  8.8521870 16.8346321 13.568288 10.4599631 18.241979

sample7 samplel sample2 sample3d sample4 sampleb
gene_1 213.834348 283.2013467 194.7481138 216.869672 193.8326895 216.80651
gene_2 16.448796 35.0352181 20.6551030 24.756812 18.4141055 21.87083

gene_3 1.935152 0.9732005 0.9835763 0.000000 0.9691634 0.00000

gene_4 150.941893 121.6500630 79.6696829 83.182888 118.2379406 74.17065

gene_b 0.000000  0.0000000  0.0000000 0.000000  0.0000000 0.00000

gene_6 6.773034 17.5176091 11.8029160 6.931907 10.6607979 16.16540
sample6 sample7

gene_1 265.9488588 265.115889
gene_2 27.8430213  27.092135
gene_3  0.9601042 2.902729
gene_4 95.0503142 117.076725
gene_b5 1.9202084 0.000000
gene_6 23.0425004  18.383948

Filtering data

Filtering is recommended to avoid considering genes without enough information, and thus to
avoid a too strong effect of multiple test correction.
In the filterT function, the filter threshold is defined according to the maximum number of counts
for genes having at least 66% of replicates as zero counts in data, for each parental (or strain origin).

Thus, the filterT method needs either the raw or normalized input file to have genes (or tran-
scripts) having zero values in at least one column. After normalization, zero values are often changed
into non integer values. That is why if your normalized file still contains genes having zero values
in at least one column, you do not need to provide the raw count file, else both raw and normalized
data files should be provided. If you want to analyze raw data, only raw ASR counts can be provided.

Note that in any case a minimal filtering step will always be performed while applying the isolde_test
function. It consists of eliminating all genes not satisfying these two conditions:
- at least one of the two medians (of paternal or maternal ASR counts) is different from 0;
- there is at least one ASR count (different from 0) in each cross.

The filterT function outputs two dataframes: removedASRcounts containing genes that did
not satisfied the two conditions, and filteredASRcounts containing genes that successfully pass
the filtering step.
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> res_filterT <- filterT(rawASRcounts = rawASRcounts, normASRcounts =
normASRcounts, target = target)
> filteredASRcounts <- res_filterT$filteredASRcounts

Now we have a dataframe filteredASRcounts containing normalized and filtered ASR counts
on which to run the statistical test.

3.2.3 ASE analysis

Depending on how many biological replicates are available for both crosses, ISoLDE will use the
bootstrap or the threshold method. The main and recommended option is to use bootstrap resam-
pling to estimate criterion distribution. Alternatively, for datasets with only two replicates from at
least one cross, empirical thresholds are applied to the criterion (see section 4 for details). The de-
fault behaviour of the isolde_test function is to adapt to the number of replicates per cross: when
only two replicates are available for at least one cross, the threshold method is used, if more than
two replicates are available for both crosses, the more accurate bootstrap method is applied. When
less than two replicates are available in the dataset, isolde_test can not be run. The bootstrap
method is more robust than the threshold one because it can take into account more information
from the replicates, but one may desire to perform the threshold method for comparison purpose.
Then, one can set the method parameter to threshold. Note that the contrary is not possible (one
can not force the bootstrap method if no more than two replicates per cross are available).

Below are two examples of ISoLDE use.

Parental bias, bootstrap method:
Here is the code to identify genes with parent-of-origin dependant expression, using the bootstrap
method on our example:

> res <- isolde_test(bias = "parental",
asr_counts = filteredASRcounts,
target = target)

Strain bias, threshold method:
If you only have two biological replicates in each cross, here is the code to look for strain bias in
gene expression with the threshold method:

> res <- isolde_test(bias = "strain",
method = "threshold",

asr_counts = filteredASRcounts,
target = target}
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3.2.4 Qutput data

ISoLDE returns R objects and can produce both graphical and textual outputs.

Object output The object output of isolde_test consists of three different data.frame:

e listASE is a dataframe with one row per gene (or transcript) identified as having an allelic
bias and five columns:

— names contains gene (or transcript) names such as asr_counts row names,
— criterion contains the criterion value (see [Reynes et al.(2016)]),

— diff _prop is the criterion numerator which reflects the difference between proportions
of either parents or strain origins,

— variability is the criterion denominator which quantifies the gene (or transcript) vari-
ability between replicates,

— origin specifies the bias direction either ”P” or ”M” for parental bias or one of specified
strain names for strain bias.

e listBA is a dataframe with one row per gene (or transcript) identified as biallelically expressed
and four columns corresponding to the first four ones in listASE.

e listUN is a dataframe with one row per gene (or transcript) with undetermined status (when
ISoLDE can not affirm that expression of these genes is biased or biallelic) and six columns.
The first five columns are the same as 1istASE, the last one may contain three values:

— FLAG_consistency for genes with no statistical evidence of neither bias nor biallelic ex-
pression but whose parental or strain bias is always in the same direction across replicates,

— FLAG_significance for genes with statistical evidence of bias but with discrepancies in
bias direction across replicates,

— NO_FLAG for other undetermined genes.

> head(res$listASEtot)

name criterion diff_prop variability origin
gene_6196 12.167896 -1.0000000 0.006754124 P
gene_561 11.072286 -0.9979916 0.008124173 P
gene_6174 8.776794 -0.9967999 0.012898647 P
gene_4729 8.582397 -0.9961772 0.013472742 P
gene_2891 8.235402 -1.0000000 0.014744511 P
gene_6959 8.100851 -0.9926529 0.015015284 P

Graphical output
A graphical output is generated by default. This graph allows to locate genes according to
criterion values. Looking for maternal or paternal expression biases, we obtain:

10
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Figure 2: ISoLDE - Graphical output
Legend
+ purple biallelically expressed genes.
+ blue paternally expressed genes.
+ red maternally expressed genes.
+ grey undetermined genes.

¢ grey surrounded undetermined genes with either consistency or significance flag.

When performing the threshold method, additional grey dashed curves represent the two crite-
rion empirical thresholds used for the analysis.
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Textual output When text argument is set to TRUE (default), three tab-delimited text files are
produced:

e the "BA” file contains what is in listBA object (see 3.2.4),
e the "ASE” file contains what is in listASE object (see 3.2.4),

o the "UN” file contains what is in listUN object (see 3.2.4).

12



Identification of Allele-Specific Expression - the ISoLDE package 13

4 Theoretical aspects of ISOLDE algorithm

In previous studies, ASE status has been tested through different ways of modelling data. ISoLDE
aims at both defining an appropriate criterion taking into account the data specificities and better
taking into account replicates.

4.1 Criterion choice

The so far used methods to identify genes with ASE rely on classical statistical methods such as
z-test or chi-square test with a global use of replicates whose reads are often summed before apply-
ing the chosen test (see for example [Babak (2012), DeVeale et al.(2012)]). In our method, the goal
was to adapt usual statistics to the data specificities. In particular, in usual z-test, the denomina-
tor accounts for the samples variability but based on a binomial behaviour which underestimates
RNAseq data variability. Moreover, as few replicates are most of time available, the use of classical
variance is inappropriate. Hence, we chose the MAD (Median Absolute Deviation, [Hampel (1974)])
to quantify samples variability. Finally, as sequencing depth has to be taken into account (the re-
sults concerning a gene having many reads are more reliable than those concerning few reads), the
MAD has been divided by the median number of reads in the sample. Thus, variability estimation
is a robust version of coefficient of variation using MAD instead of standard deviation and median
instead of mean.

The next section will now focus on how to put thresholds on this criterion. The aim is to be able to
define both genes with ASE and biallelically expressed genes and to keep the possibility that some
genes neither BA nor allele dependent expressed remain undetermined.

4.2 Threshold definition

To define thresholds, two situations are considered: either there are more than two biological
replicates in both reciprocal crosses or not.

4.2.1 Situation 1: more than two biological replicates in both crosses

When enough information is available, the method aims at taking advantage of it by using bootstrap
resampling. For each gene and each biological replicate, the total number of reads is divided up
between maternal and paternal origin according to the current question:

e when genes with ASE are being identified, in order to generate the null hypothesis distribution
of the criterion, the reads are equally allocated to maternal and paternal origins (or strain
origins) using the same distribution of proportions as what is observed between replicates
within one cross. Indeed, within a given cross, differences between maternal and paternal (or
strain) origins are expected to only account for biological noise.

e when biallelically expressed genes are being identified, in order to generate the null hypothesis
distribution of the criterion, a bias ratio is randomly chosen and the reads are distributed
according to those proportions.

13
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In both cases, the resampling is performed many times (the default value is 5000). Then, the
distributions obtained for each gene are used to compute empirical p-values which are corrected
using usual Benjamini-Hochberg FDR correction for multiple tests [Benjamini et al.(1995)].

4.2.2 Situation 2: only two biological replicates in at least one cross

In this situation, there is too few information to obtain reliable distributions under null hypothesis
from resampling. Predefined thresholds will be chosen and applied. This choice is based on a
consensus of ten different datasets including two or more replicates for each cross.

The ten datasets are the following ones:

e five datasets obtained in our labs including the two in vivo datasets used and detailed in
[Reynes et al.(2016)] and [Bouschet et al.(2016)] and three in vitro experiments containing
only two biological replicates;

e Hasin-Brumshtein’s data from [Hasin-Brumshtein et al.(2014)] studying two replicates exper-
iments on the reciprocal crosses of C57BL/6J with DBA/2J and concerning mouse adipose
tissue;

e Babak’s data from [Babak et al. (2008)] containing four replicates of E9.5 mouse embryos of
reciprocal crosses of CAST/Eij and C57BL/6J;

e three datasets from Lorenc et al. [Lorenc et al.(2014)] concerning three mouse tissues (vomeronasal
organ, hypothalamus and liver) obtained by reciprocally crossing WSB and PWD strains with
three to six biological replicates for each cross.

See [Reynes et al.(2016)] for more details.

14
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