Differential analysis of count data — the DESeq2 package

Michael Love*, Simon Anders?, Wolfgang Huber?

1 Department of Biostatistics, Dana Farber Cancer Institute and
Harvard School of Public Health, Boston, US;
2 European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

*michaelisaiahlove (at) gmail.com

September 28, 2014

Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of differentially
expressed genes. The count data are presented as a table which reports, for each sample, the
number of sequence fragments that have been assigned to each gene. Analogous data also arise
for other assay types, including comparative ChlP-Seq, HiC, shRNA screening, mass spectrometry.
An important analysis question is the quantification and statistical inference of systematic changes
between conditions, as compared to within-condition variability. The package DESeq2 provides
methods to test for differential expression by use of negative binomial generalized linear models; the
estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions®.
This vignette explains the use of the package and demonstrates typical workflows. An RNA-
Seq workflow on the Bioconductor website? (formerly the Beginner's Guide PDF), covers similar

material to this vignette but at a slower pace, including the generation of count matrices from
FASTQ files.

DESeq2 version: 1.5.71

If you use DESeq2 in published research, please cite:

M. I. Love, W. Huber, S. Anders: Moderated estimation of
fold change and dispersion for RNA-Seq data with DESeq2.
bioRxiv (2014). doi:10.1101/002832 [1]

1Other Bioconductor packages with similar aims are edgeR, baySeq, DSS and limma.
2http://www.bioconductor.org/help/workflows/rnaseqGene/

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/help/workflows/rnaseqGene/

Differential analysis of count data — the DESeq2 package

Contents

1 Standard workflow

1.1 Quick start
1.2 Inputdata e
1.2.1 Why raw counts? L
1.2.2 SummarizedExperiment input
1.2.3 Count matrix input e
1.24 HTSeq input e
1.25 Noteonfactorlevels
1.2.6 Collapsing technical replicates
1.2.7 About the pasilladataset
1.3 Differential expression analysis
1.4 Exploring and exporting results
1.41 MA-plot e
1.42 Plotcounts. e
1.4.3 More information on results columns L.
1.4.4 Exporting results to HTML or CSV files
1.5 Multi-factor designs L
Data transformations and visualization
2.1 Count data transformations
2.1.1 Blind dispersion estimation
2.1.2 Extracting transformed values L L
2.1.3 Regularized log transformation oL
2.1.4 Variance stabilizing transformation L.
2.1.5 Effects of transformations on the variance.
2.2 Data quality assessment by sample clustering and visualization
2.2.1 Heatmap of the count matrix
2.2.2 Heatmap of the sample-to-sample distances
2.2.3 Principal component plot of the samples
Variations to the standard workflow
3.1 Wald test individual steps e
32 Contrasts e
3.3 Interactions. e
3.4 Time-series experiments e
3.5 Approach to countoutliers.
3.6 Likelihood ratio test
3.7 Dispersion plot and fitting alternatives
3.7.1 Local or mean dispersion fito L
3.7.2 Supply a custom dispersion fit
3.8 Independent filtering of results L
3.9 Tests of log2 fold change above or below a threshold

3.10 Access to all calculated values

Differential analysis of count data — the DESeq2 package

3.11 Sample-/gene-dependent normalization factors

4 Theory behind DESeq2

4.1 The DESeq2 model e
4.2 Changes compared to the DESeq package
4.3 Count outlier detection e
4.4 Contrasts e e
45 Expanded model matrices Lo
4.6 Independent filtering and multiple testing L oL

4.6.1 Filtering criteria

5 Frequently asked questions
5.1 How can | get support for DESeq2?
5.2 Why are some p valuesset to NA?
5.3 How do | use the variance stabilized or rlog transformed data for differential testing? . .
5.4 Can | use DESeq?2 to analyze paired samples?
5.5 Can | run DESeq2 to contrast the levels of 100 groups?
5.6 Can | use DESeq?2 to analyze a dataset without replicates?
5.7 How can | include a continuous covariate in the design formula?
5.8 What are the exact steps performed by DESeq()7?

6 Acknowledgments

7 Session Info

31

33
33
33
34
34
35
36
36
36
37

39
39
40
40
40
40
41
41
41

41

41

http://bioconductor.org/packages/release/bioc/html/DESeq.html

Differential analysis of count data — the DESeq2 package 4

1 Standard workflow

1.1 Quick start

Here we show the most basic steps for a differential expression analysis. These steps imply you have a
SummarizedExperiment object se with a column condition in colData(se).

dds <- DESeqDataSet(se = se, design = ~ condition)
dds <- DESeq(dds)
res <- results(dds)

1.2 Input data
1.2.1 Why raw counts?

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq or another high-
throughput sequencing experiment, in the form of a matrix of integer values. The value in the i-th
row and the j-th column of the matrix tells how many reads have been mapped to gene ¢ in sample j.
Analogously, for other types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DESeq2’s statistical
model to hold, as only the actual counts allow assessing the measurement precision correctly. Hence,
please do not supply other quantities, such as (rounded) normalized counts, or counts of covered base
pairs — this will only lead to nonsensical results.

1.2.2 SummarizedExperiment input

The class used by the DESeq2 package to store the read counts is DESeqDataSet which extends the
SummarizedExperiment class of the GenomicRanges package. This facilitates preparation steps and also
downstream exploration of results. For counting aligned reads in genes, the summarizeOverlaps func-
tion of GenomicAlignments with mode="Union" is encouraged, resulting in a SummarizedExperiment
object.

An example of the steps to produce a SummarizedExperiment can be found in an RNA-Seq workflow
on the Bioconductor website® and in the vignette for the data package airway. Here we load the
SummarizedExperiment from that package in order to build a DESeqDataSet.

library("airway")
data("airway")
se <- airway

3http://www.bioconductor.org/help/workflows/rnaseqGene/

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/data/experiment/html/airway.html
http://www.bioconductor.org/help/workflows/rnaseqGene/

Differential analysis of count data — the DESeq2 package 5

A DESeqDataSet object must have an associated design formula. The design formula expresses the
variables which will be used in modeling. The formula should be a tilde (~) followed by the variables with
plus signs between them (it will be coerced into an formula if it is not already). An intercept is included,
representing the base mean of counts. The design can be changed later, however then all differential
analysis steps should be repeated, as the design formula is used to estimate the dispersions and to
estimate the log2 fold changes of the model. The constructor function below shows the generation of
a DESeqDataSet from a SummarizedExperiment se.

Note: In order to benefit from the default settings of the package, you should put the variable of interest
at the end of the formula and make sure the control level is the first level.

library("DESeq2")

ddsSE <- DESeqDataSet(se, design = ~ cell + dex)
ddsSE$dex <- relevel (ddsSE$dex, "untrt")
ddsSE

class: DESegDataSet
dim: 64102 8

exptData(l): 7’

assays(l): counts

rownames (64102): ENSGO0000000003 ENSGO0000000005 ... LRG_98 LRG_99
rowData metadata column names(0):

colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

colData names(9): SampleName cell ... Sample BioSample

1.2.3 Count matrix input

Alternatively, if you already have prepared a matrix of read counts, you can use the function DESeqDataSetFromMatr
For this function you should provide the counts matrix, the column information as a DataFrame or
data.frame and the design formula. First, we load the pasillaGenes data object, in order to extract

a count matrix and phenotypic data.

library("pasilla")

library("Biobase")

data("pasillaGenes")

countData <- counts(pasillaGenes)

colData <- pData(pasillaGenes) [,c("condition","type")]

Now that we have a matrix of counts and the column information, we can construct a DESeqDataSet:

dds <- DESegDataSetFromMatrix(countData = countData,
colData = colData,
design = ~ condition)
dds$condition <- factor(dds$condition,
levels=c("untreated", "treated"))
dds

Differential analysis of count data — the DESeq2 package 6

class: DESeqDataSet
dim: 14470 7

exptData(0):

assays(l): counts

rownames(14470) : FBgn0000003 FBgn0000008 ... FBgn0261574 FBgn0261575
rowData metadata column names(0):
colnames(7): treatedlfb treated2fb ... untreated3fb untreated4fb

colData names(2): condition type

If you have additional feature data, it can be added to the DESeqDataSet by adding to the metadata
columns of a newly constructed object. (Here we add redundant data for demonstration, as the gene
names are already the rownames of the dds.)

featureData <- data.frame(gene=rownames(pasillaGenes))
mcols(dds) <- DataFrame(mcols(dds), featureData)

1.2.4 HTSeq input

If you have htseq-count from the HTSeq python package® you can use the function DESeqDataSetFromHTSeqCour
For an example of using the python scripts, see the pasilla or parathyroid data package. First you will
want to specify a variable which points to the directory in which the HTSeq output files are located.

directory <- "/path/to/your/files/"

However, for demonstration purposes only, the following line of code points to the directory for the
demo HTSeq output files packages for the pasilla package.

directory <- system.file("extdata", package="pasilla", mustWork=TRUE)

We specify which files to read in using 1list.files, and select those files which contain the string
"treated" using grep. The sub function is used to chop up the sample filename to obtain the
condition status, or you might alternatively read in a phenotypic table using read.table.

sampleFiles <- grep("treated",list.files(directory) ,value=TRUE)
sampleCondition <- sub("(.*treated).*","\\1",sampleFiles)
sampleTable <- data.frame(sampleName = sampleFiles,
fileName = sampleFiles,
condition = sampleCondition)
ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,
directory = directory,
design= ~ condition)
ddsHTSeq$condition <- factor(ddsHTSeq$condition,
levels=c("untreated", "treated"))
ddsHTSeq

4available from http://www-huber.embl .de/users/anders/HTSeq, described in [2]

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroid.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://www-huber.embl.de/users/anders/HTSeq

Differential analysis of count data — the DESeq2 package 7

class: DESeqDataSet

dim: 70463 7

exptData(0):

assays(l): counts

rownames(70463): FBgn0000003:001 FBgn0000008:001 ... FBgn0261575:001
#i# FBgn0261575:002

rowData metadata column names(0):

colnames(7): treatedlfb.txt treated2fb.txt ... untreated3fb.txt

untreated4fb.txt

colData names(1): condition

1.2.5 Note on factor levels

In the three examples above, we applied the function factor to the column of interest in colData,
supplying a character vector of levels. It is important to supply levels (otherwise the levels are chosen in
alphabetical order) and to put the “control” or “untreated” level as the first element (" base level”), so
that the log2 fold changes produced by default will be the expected comparison against the base level.
An R function for easily changing the base level is relevel. An example of setting the base level of a
factor with relevel is:

dds$condition <- relevel(dds$condition, "untreated")
In addition, when subsetting the columns of a DESeqDataSet, i.e., when removing certain samples from
the analysis, it is possible that all the samples for one or more levels of a variable in the design formula

are removed. In this case, the droplevels function can be used to remove those levels which do not
have samples in the current DESeqDataSet:

dds$condition <- droplevels(dds$condition)

1.2.6 Collapsing technical replicates

DESeq?2 provides a function collapseReplicates which can assist in combining the counts from tech-
nical replicates into single columns. See the manual page for an example of the use of collapseReplicates.

1.2.7 About the pasilla dataset

We continue with the pasilla data constructed from the count matrix method above. This data set
is from an experiment on Drosophila melanogaster cell cultures and investigated the effect of RNAI
knock-down of the splicing factor pasilla [3]. The detailed transcript of the production of the pasilla
data is provided in the vignette of the data package pasilla.

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html

Differential analysis of count data — the DESeq2 package 8

1.3 Differential expression analysis

The standard differential expression analysis steps are wrapped into a single function, DESeq. The
steps of this function are described in Section 4.1 and in the manual page for ?DESeq. The individual
sub-functions which are called by DESeq are still available, described in Section 3.1.

Results tables are generated using the function results, which extracts a results table with log2 fold
changes, p values and adjusted p values. With no arguments to results, the results will be for the
last variable in the design formula, and if this is a factor, the comparison will be the last level of this
variable over the first level.

dds <- DESeq(dds)

res <- results(dds)

resOrdered <- res[order(res$padj),]
head (resOrdered)

log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 6 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue pad]
#it <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0039155 453 -3.72 0.160 -23.2 2.11e-119 1.62e-115
FBgn0029167 2165 -2.08 0.103 -20.2 1.34e-90 5.14e-87
FBgn0035085 367 -2.23 0.137 -16.3 8.12e-60 2.08e-56
FBgn0029896 258 -2.21 0.159 -13.9 4.49e-44 7.5le-41
FBgn0034736 118 -2.57 0.184 -13.9 4.88e-44 7.5le-41
FBgn0040091 611 -1.43 0.120 -11.9 7.03e-33 9.02e-30

We can summarize some basic tallies using the summary function.

summary (res)

it
out of 11836 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 392, 3.3%
LFC < 0 (down) : 410, 3.5%
outliers [1] : 57, 0.489%
low counts [2] : 4081, 347

(mean count < 9.2)
[1] see ’cooksCutoff’ argument of ?7results
[2] see ’independentFiltering’ argument of ?results

The results function contains a number of arguments to customize the results table which is generated.
Note that the results function automatically performs independent filtering based on the mean of
counts for each gene, optimizing the number of genes which will have an adjusted p value below a given
threshold. This will be discussed further in Section 3.8.

Differential analysis of count data — the DESeq2 package 9

unshrunken log, fold changes DESeq2

LoV [V I [
o o
o o
= =
@ @
- =
[P [FRP—
z s}
£ £
o [
L= =l

o . o T wedwer v T

J T T J J T T T
1e-01 1e+01 1e+03 1e+03 1e-01 Te+01 1e+03 1e+03
mean expression mean expression

Figure 1: MA-plot. These plots show the log2 fold changes from the treatment over the mean of normalized
counts, i.e. the average of counts normalized by size factors. The left plot shows the “unshrunken” log2
fold changes, while the right plot, produced by the code above, shows the shrinkage of log2 fold changes
resulting from the incorporation of zero-centered normal prior. The shrinkage is greater for the log2 fold
change estimates from genes with low counts and high dispersion, as can be seen by the narrowing of spread
of leftmost points in the right plot.

If a multi-factor design is used, or if the variable in the design formula has more than two levels, the
contrast argument of results can be used to extract different comparisons from the DESeqDataSet
returned by DESeq. Multi-factor designs are discussed further in Section 1.5, and the use of the
contrast argument is dicussed in Section 3.2.

For advanced users, note that all the values calculated by the DESeq2 package are stored in the
DESeqDataSet object, and access to these values is discussed in Section 3.10.

1.4 Exploring and exporting results
1.4.1 MA-plot

In DESeq2, the function plotMA shows the log2 fold changes attributable to a given variable over the
mean of normalized counts. Points will be colored red if the adjusted p value is less than 0.1. Points
which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, main="DESeq2", ylim=c(-2,2))
The plotMA function can also take the DESeqDataSet as its first argument, in which case results
will be called internally.

After calling plotMA, one can use the function identify to interactively detect the row number of

Differential analysis of count data — the DESeq2 package 10

FBgn0039155
8°]
o
S |
Te]
400 -
g
8 8 4
e N +—
S c
® o 8
£ S °
) 100 -
8 . o
o L]
o .
T T
untreated treated 25- | |
untreated treated
group condition

Figure 2: Plot of counts The plot of normalized counts (plus a pseudocount of %) either made using the
plotCounts function (left) or using another plotting library (right, using ggplot2).

individual genes by clicking on the plot.
identify(res$baseMean, res$log2FoldChange)

1.4.2 Plot counts

It can also be useful to examine the counts of reads for a single gene across the groups. A simple
function for making this plot is plotCounts, which normalizes counts by sequencing depth and adds a
pseudocount of % to allow for log scale plotting. The counts are grouped by the variables in intgroup,
where more than one variable can be specified. Here we specify the gene which had the smallest p value
from the results table created above.

plotCounts(dds, gene=rownames(resOrdered) [1], intgroup="condition")

For customized plotting, an argument returnData specifies that the function should only return a
data.frame for plotting with ggplot.

d <- plotCounts(dds, gene=rownames(resOrdered) [1], intgroup="condition",
returnData=TRUE)
library("ggplot2")
ggplot(d, aes(x=condition, y=count)) +
geom_point (position=position_jitter(w=0.1,h=0)) +
scale_y_logl0(breaks=c(25,100,400))

http://cran.fhcrc.org/web/packages/ggplot2/index.html

Differential analysis of count data — the DESeq2 package 11

1.4.3 More information on results columns

Information about which variables and tests were used can be found by calling the function mcols on
the results object.

mcols(res)$description

[1] "mean of normalized counts for all samples"

[2] "log2 fold change (MAP): condition treated vs untreated"
[3] "standard error: condition treated vs untreated"

[4] "Wald statistic: condition treated vs untreated"

[5] "Wald test p-value: condition treated vs untreated"

[6] "BH adjusted p-values"

For a particular gene, a log2 fold change of —1 for condition treated vs untreated means that
the treatment induces a change in observed expression level of 27! = 0.5 compared to the untreated
condition. If the variable of interest is continuous-valued, then the reported log2 fold change is per unit
of change of that variable.

Note: some values in the results table can be set to NA, for either one of the following reasons:

1. If within a row, all samples have zero counts, the baseMean column will be zero, and the log?2
fold change estimates, p value and adjusted p value will all be set to NA.

2. If a row contains a sample with an extreme count outlier then the p value and adjusted p value
are set to NA. These outlier counts are detected by Cook's distance. Customization of this outlier
filtering and description of functionality for replacement of outlier counts and refitting is described
in Section 3.5,

3. If a row is filtered by automatic independent filtering, based on low mean normalized count, then
only the adjusted p value is set to NA. Description and customization of independent filtering is
described in Section 3.8.

The column of 1og2FoldChange for the default workflow will contain shrunken estimates of fold change
as mentioned above. It is possible to add a column to the results table — without rerunning the analysis
— which contains the unshrunken, or maximum likelihood estimates (MLE), log2 fold changes. This will
add the column 1fcMLE directly after log2FoldChange.

head(results(dds, addMLE=TRUE),4)
log2 fold change (MAP): condition treated vs untreated

Wald test p-value: condition treated vs untreated
DataFrame with 4 rows and 7 columns

#i#t baseMean log2FoldChange 1fcMLE 1fcSE stat pvalue
#it <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0000003 0.159 0.0345 15.0344 0.0461 0.7487 0.454
FBgn0000008 52.226 0.0197 0.0281 0.2091 0.0944 0.925
FBgn0000014 0.390 0.0119 0.6247 0.0622 0.1907 0.849
FBgn0000015 0.905 -0.0431 -0.8126 0.1056 -0.4085 0.683

#Hit padj

Differential analysis of count data — the DESeq2 package 12

H## <numeric>
FBgn0000003 NA
FBgn0000008 0.987
FBgn0000014 NA
FBgn0000015 NA

1.4.4 Exporting results to HTML or CSV files

An HTML report of the results with plots and sortable/filterable columns can be exported using the
Reporting Tools package on a DESeqDataSet that has been processed by the DESeq function. For a
code example, see the “RNA-seq differential expression” vignette at the ReportingTools page, or the
manual page for the publish method for the DESeqDataSet class.

A plain-text file of the results can be exported using the base R functions write.csv or write.delim.
We suggest using a descriptive file name indicating the variable and levels which were tested.

write.csv(as.data.frame(resOrdered),
file="condition_treated_results.csv")

Exporting only the results which pass an adjusted p value threshold can be accomplished with the
subset function, followed by the write.csv function.

resSig <- subset(resOrdered, padj < 0.1)
resSig

log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 802 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue padj
#it <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0039155 453 -3.72 0.160 -23.2 2.11e-119 1.62e-115
FBgn0029167 2165 -2.08 0.103 -20.2 1.34e-90 b5.14e-87
FBgn0035085 367 -2.23 0.137 -16.3 8.12e-60 2.08e-56
FBgn0029896 258 -2.21 0.159 -13.9 4.49e-44 7.5le-41
FBgn0034736 118 -2.57 0.184 -13.9 4.88e-44 7.5le-41
o .. Ce ca ca Ce ca ca
FBgn0030361 66.9 0.466 0.181 2.57 0.0103 0.0990
FBgn0015376 217.3 -0.355 0.138 -2.57 0.0103 0.0991
FBgn0040384 154.3 -0.428 0.167 -2.57 0.0103 0.0991
FBgn0023537 927.0 -0.316 0.123 -2.56 0.0104 0.0995
FBgn0031079 2002.0 0.317 0.124 2.56 0.0104 0.0995

http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html

Differential analysis of count data — the DESeq2 package 13

1.5 Multi-factor designs

Experiments with more than one factor influencing the counts can be easily analyzed using model
formula including the additional variables. The data in the pasi/la package have a condition of interest
(the column condition), as well as information on the type of sequencing which was performed (the
column type), as we can see below:

colData(dds)

DataFrame with 7 rows and 3 columns

#it condition type sizeFactor
#it <factor> <factor> <numeric>
treatedlfb treated single-read 1.512
treated2fb treated paired-end 0.784
treated3fb treated paired-end 0.896
untreatedlfb untreated single-read 1.050
untreated2fb untreated single-read 1.659
untreated3fb untreated paired-end 0.712
untreated4fb untreated paired-end 0.784

We create a copy of the DESeqDataSet, so that we can rerun the analysis using a multi-factor design.
ddsMF <- dds

We can account for the different types of sequencing, and get a clearer picture of the differences
attributable to the treatment. As condition is the variable of interest, we put it at the end of the
formula. Thus the results function will by default pull the condition results unless contrast or
name arguments are specified. Then we can re-run DESeq:

design(ddsMF) <- formula(™ type + condition)
ddsMF <- DESeq(ddsMF)

Again, we access the results using the results function.

resMF <- results(ddsMF)
head (resMF)

log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 6 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0000003 0.159 0.03266 0.0437 0.7477 0.4546 NA
FBgn0000008 52.226 0.01222 0.2074 0.0589 0.9530 0.987
FBgn0000014 0.390 0.00993 0.0567 0.1751 0.8610 NA
FBgn0000015 0.905 -0.03600 0.0936 -0.3846 0.7005 NA
FBgn0000017 2358.243 -0.25667 0.1102 -2.3291 0.0199 0.134
FBgn0000018 221.242 -0.06669 0.1414 -0.4717 0.6371 0.882

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html

Differential analysis of count data — the DESeq2 package

14

It is also possible to retrieve the log2 fold changes, p values and adjusted p values of the type variable.
The contrast argument of the function results takes a character vector of length three: the name
of the variable, the name of the factor level for the numerator of the log2 ratio, and the name of the
factor level for the denominator. Contrasts are described in more detail in Section 3.2.

resMFType <- results(ddsMF, contrast=c("type","single-read","paired-end"))
head (resMFType)

##
#it
#Hit
#it
##
##
#it
#it
##
##
##

log2 fold change (MAP): type single-read vs paired-end
Wald test p-value: type single-read vs paired-end
DataFrame with 6 rows and 6 columns

baseMean log2FoldChange

<numeric>
FBgn0000003 0.159
FBgn0000008 52.226
FBgn0000014 0.390
FBgn0000015 0.905
FBgn0000017 2358.243

FBgn0000018 221.242

<numeric>

.02389
.06248
.00580
.05646
.00939
.26877

1fcSE

<numeric>

0.

O O O O O

0380
.1970
.0494
.0819
.1089
.1380

stat

<numeric>

.6280
.3172
.1176
.6890

0.0862

.9481

pvalue
<numeric>

0.
.7511
.9064
.4908
.9313
.0514

O O O O O

5300

pad]
<numeric>
NA

0.884

If the variable is continuous or an interaction term (see Section 3.3) then the results can be extracted us-
ing the name argument to results, where the name is one of elements returned by resultsNames (dds).

Differential analysis of count data — the DESeq2 package 15

2 Data transformations and visualization

2.1 Count data transformations

In order to test for differential expression, we operate on raw counts and use discrete distributions as
described in the previous Section 1.3. However for other downstream analyses — e.g. for visualization
or clustering — it might be useful to work with transformed versions of the count data.

Maybe the most obvious choice of transformation is the logarithm. Since count values for a gene can
be zero in some conditions (and non-zero in others), some advocate the use of pseudocounts, i.e.
transformations of the form

y =logy(n 4+ 1) or more generally, y = log,(n + ng), (1)

where n represents the count values and ng is a positive constant.

In this section, we discuss two alternative approaches that offer more theoretical justification and a
rational way of choosing the parameter equivalent to ng above. One method incorporates priors on the
sample differences [1], and the other uses the concept of variance stabilizing transformations [4, 5, 6].
Both transformations produce transformed data on the log, scale which has been normalized with
respect to library size.

2.1.1 Blind dispersion estimation

The two functions, rlog and varianceStabilizingTransformation, have an argument blind, for
whether the transformation should be blind to the sample information specified by the design formula.
When blind equals TRUE (the default), the functions will re-estimate the dispersions using only an
intercept (design formula ~ 1). This setting should be used in order to compare samples in a manner
wholly unbiased by the information about experimental groups, for example to perform sample QA
(quality assurance) as demonstrated below.

However, blind dispersion estimation is not the appropriate choice if one expects that many or the
majority of genes (rows) will have large differences in counts which are explanable by the experimental
design, and one wishes to tranform the data for downstream analysis. In this case, using blind dispersion
estimation will lead to large estimates of dispersion, as it attributes differences due to experimental
design as unwanted “noise”, and shrinks the tranformed values towards each other. By setting blind
to FALSE, the dispersions already estimated will be used to perform transformations, or if not present,
they will be estimated using the current design formula. Note that only the fitted dispersion estimates
from mean-dispersion trend line is used in the transformation. So setting blind to FALSE is still mostly
unbiased by the information about the samples.

Differential analysis of count data — the DESeq2 package 16

2.1.2 Extracting transformed values

The two functions return SummarizedExperiment objects, as the data are no longer counts. The assay
function is used to extract the matrix of normalized values:

rld <- rlog(dds)

vsd <- varianceStabilizingTransformation(dds)
rlogMat <- assay(rld)

vstMat <- assay(vsd)

Note that if you have many samples, and the rlog function is taking too long, there is an argument
fast=TRUE, which will perform an approximation of the rlog: instead of shrinking the samples inde-
pendently, the function will find the optimal amount of shrinkage for each gene given the mean counts.
The optimization is performed on the same likelihood of the data as the original rlog. The speed-up
for a dataset with 100 samples is around 15x.

2.1.3 Regularized log transformation

The function rlog, stands for regularized log, transforming the original count data to the log2 scale
by fitting a model with a term for each sample and a prior distribution on the coefficients which is
estimated from the data. This is the same kind of shrinkage (sometimes referred to as regularization,
or moderation) of log fold changes used by the DESeq and nbinomWaldTest, as seen in Figure 1. The
resulting data contains elements defined as:

log,(gij) = Bio + Bij

where ¢;; is a parameter proportional to the expected true concentration of fragments for gene 7 and
sample j (see Section 4.1), B, is an intercept which does not undergo shrinkage, and 3;; is the sample-
specific effect which is shrunk toward zero based on the dispersion-mean trend over the entire dataset.
The trend typically captures high dispersions for low counts, and therefore these genes exhibit higher
shrinkage from therlog.

Note that, as ¢;; represents the part of the mean value p;; after the size factor s; has been divided
out, it is clear that the rlog transformation inherently accounts for differences in sequencing depth.
Without priors, this design matrix would lead to a non-unique solution, however the addition of a prior
on non-intercept betas allows for a unique solution to be found. The regularized log transformation is
preferable to the variance stabilizing transformation if the size factors vary widely.

2.1.4 Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form expression for the
variance stabilizing transformation is used by varianceStabilizingTransformation, which is derived
in the file vst . pdf, that is distributed in the package alongside this vignette. If a local fit is used (option
fitType="locfit" to estimateDispersions) a numerical integration is used instead.

Differential analysis of count data — the DESeq2 package 17

o] —_
—
.,-o-'"---_'_ -o—'-'_'_'_'_'_
w — -~ ___.,-o-"""'_-'-
e
—_ =
=
o lll'
| . - .
| W variance stabilizing transformation
o
(| = logz (n/sq)
I I] I
0 a0 100 150

Figure 3: VST and log2. Graphs of the variance stabilizing transformation for sample 1, in blue, and of
the transformation f(n) = logy(n/s1), in black. n are the counts and s; is the size factor for the first sample.

The resulting variance stabilizing transformation is shown in Figure 3. The code that produces the
figure is hidden from this vignette for the sake of brevity, but can be seen in the .Rnw or .R source file.
Note that the vertical axis in such plots is the square root of the variance over all samples, so including
the variance due to the experimental conditions. While a flat curve of the square root of variance over
the mean may seem like the goal of such transformations, this may be unreasonable in the case of
datasets with many true differences due to the experimental conditions.

2.1.5 Effects of transformations on the variance

Figure 4 plots the standard deviation of the transformed data, across samples, against the mean, using
the shifted logarithm transformation (1), the regularized log transformation and the variance stabilizing
transformation. The shifted logarithm has elevated standard deviation in the lower count range, and
the regularized log to a lesser extent, while for the variance stabilized data the standard deviation is
roughly constant along the whole dynamic range.

library("vsn"

par (mfrow=c(1,3))

notAllZero <- (rowSums(counts(dds))>0)

meanSdPlot (log2(counts(dds,normalized=TRUE) [notAllZero,] + 1))
meanSdPlot (assay(rld[notAllZero,]))

meanSdPlot (assay(vsd[notAllZero,]))

Differential analysis of count data — the DESeq2 package 18

15
1

oz
1

o8

[= _:,: p .
R ¥ . | = i —
£ . b '\' - T "
- o L
[2
=] [=] . =
a .
e 5 T T T T T T o T T T T T T
o [E i) jLeEax] o 0 =L L E} Lo o n]
rankimeani rakl mean rarkimean)

Figure 4: Per-gene standard deviation (taken across samples), against the rank of the mean, for the shifted
logarithm logy(n + 1) (left), the regularized log transformation (center) and the variance stabilizing transfor-
mation (right).

2.2 Data quality assessment by sample clustering and visualization

Data quality assessment and quality control (i.e. the removal of insufficiently good data) are essential
steps of any data analysis. These steps should typically be performed very early in the analysis of a new
data set, preceding or in parallel to the differential expression testing.

We define the term quality as fitness for purpose®. Our purpose is the detection of differentially
expressed genes, and we are looking in particular for samples whose experimental treatment suffered
from an anormality that renders the data points obtained from these particular samples detrimental to
our purpose.

2.2.1 Heatmap of the count matrix

To explore a count matrix, it is often instructive to look at it as a heatmap. Below we show how to
produce such a heatmap from the raw and transformed data.

library("RColorBrewer")

library("gplots")

select <- order(rowMeans(counts(dds,normalized=TRUE)) ,decreasing=TRUE) [1:30]
hmcol <- colorRampPalette(brewer.pal(9, "GnBu")) (100)

heatmap.2(counts(dds,normalized=TRUE) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10,6))

Shttp://en.wikipedia.org/wiki/Quality_%28business%29

http://en.wikipedia.org/wiki/Quality_%28business%29

Differential analysis of count data — the DESeq2 package 19

Color Key Color Key Color Key

L - =
£ g 2o
E E 5
3 3 3
o o Os
20000 80000 14 15 16 13 14 15 16
Value

Value Value

FBgn0000556
FBgn0000559
FBgn0064225
FBgn0003517
FBgn0039713
FBgn0002526
FBgno001219
FBgn0000042
FBgn00831214
FBgn0027571
FBgn0003279
FBgno001042
FBgn0040813
FBgn00049221
FBg0000299
FBgn0039857
FBgn0024939
FBgn0014026
FBgn0011828
FBgn0004167
FBgn0011284
FBgn00866651
FBgn0002622
FBgn0026562
FBgn0001233
FBgn0010412
FBgn0002626

FBgn0000556
FBgn0000559
FBgn0064225
FBgn0003517
FBgn0039713
FBgn0002526
FBgn0001219
FBgn0000042
FBgn00831214
FBgn0027571
FBgn0003279
FBgn0001042
FBgn0040813
FBgn00049221
FBgn0000299
FBgn0039857
FBgn0024939
FBgn0014026
FBgn0011828
FBgn0004167
FBgn0011284
FBgn00866651
FBgn0002622
FBgn0026562
FBgn0001233
FBgn0010412
FBgn0002626
FBgn0004413
FBgn0039309+
FBgn0086056+

Foano0nosss
Fagnoooosss
Fognoosazs
Fognoondsi?

L regnonsers
Fognoonzs2s
Fognooniz1s
Fognoonoosz
Fognooma121s
Foanooz7s71
Fogno0n27o
Fognoooissz
Fognoo4os13
Fognoondoz2:
Fogn0000209
Fognoossss?
Fognoo24s0
Fognoo14026
Fognoo1i6zs
Fognoonats?
Fognooriss
Fognoonssess
Foanoonze2z
Fognoozese?
Fognoo0tzss
Fognooioet2
Foanoonzezs
Fognoo0ad1s Fognoonia1s
Fogno0a9soss Fogno039800s
Fognoonsoses Fognoonsose

| m

2 £ 2 a 2 2 £ 2 a2 2 a2 2 2 £ 2 a2 2 a2 2 2 £
= S & a 8 o 3 = S & a 8 o 3 = S & = 5 o I
k=1 o k=1 k=] =1 © =1 b1 o b1 k=1 -1 © =1 b1 ° b1 k=1 5 o >
2 2
© ©
g g I g I 14 I g 4 I g I 14 I I g g 14 I g e
= = = € € € € = = = € € € € = = = € € € €

El El E El E El 5 El E El 5 El

Figure 5: Heatmaps showing the expression data of the 30 most highly expressed genes. The data is of raw
counts (left), from regularized log transformation (center) and from variance stabilizing transformation (right).

heatmap.2(assay(rld) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10, 6))

heatmap.2(assay(vsd) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10, 6))

2.2.2 Heatmap of the sample-to-sample distances

Another use of the transformed data is sample clustering. Here, we apply the dist function to the
transpose of the transformed count matrix to get sample-to-sample distances. We could alternatively
use the variance stabilized transformation here.

distsRL <- dist(t(assay(rld)))

A heatmap of this distance matrix gives us an overview over similarities and dissimilarities between
samples (Figure 6):

mat <- as.matrix(distsRL)

rownames (mat) <- colnames(mat) <- with(colData(dds),

paste(condition, type, sep=" : "))
heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13))

Differential analysis of count data — the DESeq2 package 20

Color Key

6

gognt

0 5 10 15 20
Value

]
|

untreated : single-read

untreated : single-read

untreated : paired-end

untreated : paired—end

— treated : paired-end

— treated : paired-end

treated : single-read

treated : single-read
treated : paired—end
treated : paired-end
untreated : paired—end
untreated : paired-end
untreated : single-read
untreated : single-read

Figure 6: Sample-to-sample distances. Heatmap showing the Euclidean distances between the samples
as calculated from the regularized log transformation.

2.2.3 Principal component plot of the samples

Related to the distance matrix of Section 2.2.2 is the PCA plot of the samples, which we obtain as
follows (Figure 7).

plotPCA(rld, intgroup=c("condition", "type"))

It is also possible to customize the PCA plot using the ggplot function.

data <- plotPCA(rld, intgroup=c("condition", "type"), returnData=TRUE)
percentVar <- round(100 * attr(data, "percentVar"))
ggplot(data, aes(PCl, PC2, color=condition, shape=type)) +
geom_point(size=4) +
xlab(paste0("PCl: ",percentVar[1],"’ variance")) +
ylab(paste0("PC2: " ,percentVar[2],"’, variance"))

Differential analysis of count data — the DESeq2 package 21

5.0-
@
o
= group
'% 25- treated : paired—end
> .
© e treated : single-read
o
2-7'-, 0.0 - e untreated : paired—end
E\l)' untreated : single-read
D— _25 -

% 3 0 3
PC1: 52% variance

Figure 7: PCA plot. PCA plot. The 7 samples shown in the 2D plane spanned by their first two principal
components. This type of plot is useful for visualizing the overall effect of experimental covariates and batch

effects.

A
5.0 -
() type
o .
% e paired-end
§ 2.5 A single-read
S .
o‘_r') 0.0 - condition
& ° untreated
9 e treated
O _25-4
| | | |
-6 -3 0 3

PC1: 52% variance

Figure 8: PCA plot. PCA plot customized using the ggplot2 library.

3 Variations to the standard workflow

3.1 Wald test individual steps

The function DESeq runs the following functions in order:

dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)

http://cran.fhcrc.org/web/packages/ggplot2/index.html

Differential analysis of count data — the DESeq2 package 22

dds <- nbinomWaldTest (dds)

3.2 Contrasts

A contrast is a linear combination of factor level means, which can be used to test if differences between
groups are actually zero. The simplest use case for contrasts is an experimental design containing a
factor with three levels, say A, B and C. Contrasts enable the user to generate results for all 3 possible
differences: log?2 fold change of B vs A, of C vs A, and of C vs B (the other three possible pairs will
simply have —1x the log2 fold changes of these three).

In order to fit models with “shrunken” log2 fold changes in a manner which is independent to the
choice of base level, DESeq2 uses “expanded model matrices”, described further in Section 4.5. The
expanded model matrices include a coefficient for each level of the factors in addition to an intercept.
The contrast argument of results function is again used to extract test results of log2 fold changes
of interest.

Further examples of the use of contrasts can be found in the examples of the help page for the results
function.

The formula that is used to generate the contrasts can be found in Section 4.4.

3.3 Interactions

Interaction terms can be added to the design formula, in order to test, for example, if the log2 fold
change attributable to a given condition is different based on a second variable, for example if the
treatment effect of a drug is differs based on another grouping variable like sex or species. Interactions
are specified in R formula using a colon, :, between the two variables names. Demonstrations of
extracting results from an interaction model are shown in the help page for results.

3.4 Time-series experiments

As with models containing interaction terms, there are a number of ways to analyze time-series ex-
periments, depending on the biological question of interest. In order to test for any differences over
multiple time points, once can use a design including the time factor, and then test using the likelihood
ratio test as described in Section 3.6, where the time factor is removed in the reduced formula. For a
control and treatment time series, one can use a design formula containing the condition factor, the
time factor, and the interaction of the two. In this case, using the likelihood ratio test with a reduced
model which does not contain the interaction term will test whether the condition induces a change in
gene expression at any time point after the base-level time point (time 0).

Effects at individual time points can also be investigated using interactions, however we note that
testing all combinations of time points and conditions is just one approach to exploring time course
data. We also suggest that users consider applying transformations which stabilize the variance of the

Differential analysis of count data — the DESeq2 package 23

count data, as described in Section 2. This transformed data can then be used for exploratory data
analysis, by selecting a subset of genes which has the highest variance and then using other packages
to perform gene clustering.

3.5 Approach to count outliers

RNA-Seq data sometimes contain isolated instances of very large counts that are apparently unrelated
to the experimental or study design, and which may be considered outliers. There are many reasons why
outliers can arise, including rare technical or experimental artifacts, read mapping problems in the case
of genetically differing samples, and genuine, but rare biological events. In many cases, users appear
primarily interested in genes that show a consistent behavior, and this is the reason why by default,
genes that are affected by such outliers are set aside by DESeq2, or if there are sufficient samples,
outlier counts are replaced for model fitting. These two behaviors are described below.

The DESeq function (and nbinomWaldTest/nbinomLRT functions) calculates, for every gene and for
every sample, a diagnostic test for outliers called Cook’s distance. Cook’s distance is a measure of
how much a single sample is influencing the fitted coefficients for a gene, and a large value of Cook's
distance is intended to indicate an outlier count. The Cook's distances are stored as a matrix available
in assays(dds) [["cooks"]].

The results function automatically flags genes which contain a Cook's distance above a cutoff for
samples which have 3 or more replicates. The p values and adjusted p values for these genes are set to
NA. At least 3 replicates are required for flagging, as it is difficult to judge which sample might be an
outlier with only 2 replicates.

With many degrees of freedom —i. e., many more samples than number of parameters to be estimated —
it is undesirable to remove entire genes from the analysis just because their data include a single count
outlier. When there are 7 or more replicates for a given sample, the DESeq function will automatically
replace counts with large Cook’s distance with the trimmed mean over all samples, scaled up by the
size factor or normalization factor for that sample. This approach is conservative, it will not lead to
false positives, as it replaces the outlier value with the value predicted by the null hypothesis.

The default Cook’s distance cutoff for the two behaviors described above depends on the sample size and
number of parameters to be estimated. The default is to use the 99% quantile of the F'(p, m — p) distri-
bution (with p the number of parameters including the intercept and m number of samples). The default
for gene flagging can be modified using the cooksCutoff argument to the results function. The
gene flagging functionality can be disabled by setting cooksCutoff to FALSE or Inf. The automatic
outlier replacement performed by DESeq can be disabled by setting the minReplicatesForReplace
argument to Inf.

DESeq automatically replaces outliers if there are sufficient replicates and a row contains a count with
very high Cook’s distance. DESeq preserves the original counts in counts (dds) saving the replacement
counts as a matrix named replaceCounts in assays(dds).

Differential analysis of count data — the DESeq2 package 24

3.6 Likelihood ratio test

One reason to use the likelihood ratio test is in order to test the null hypothesis that log2 fold changes
for multiple levels of a factor, or for multiple variables, such as all interactions between two variables,
are equal to zero. This is conceptually similar to an analysis of variance (ANOVA) calculation for linear
regression, except the case of the Negative Binomial GLM, we use an analysis of deviance (ANODEV),
where the deviance captures the difference in likelihood between a full and a reduced model.

The likelihood ratio test can be specified using the test argument to DESeq, which substitutes
nbinomWaldTest with nbinomLRT. In this case, the user needs to provide a reduced formula, e.g. one
which does not contain the variable of interest. The full formula is the one specified by design(dds).
The degrees of freedom for the test is obtained from the difference between the number of parameters
in the two models.

3.7 Dispersion plot and fitting alternatives

Plotting the dispersion estimates is a useful diagnostic. The dispersion plot in Figure 9 is typical, with
the final estimates shrunk from the gene-wise estimates towards the fitted estimates. Some gene-wise
estimates are flagged as outliers and not shrunk towards the fitted value, (this outlier detection is
described in the man page for estimateDispersionsMAP). The amount of shrinkage can be more or
less than seen here, depending on the sample size, the number of coefficients, the row mean and the
variability of the gene-wise estimates.

plotDispEsts(dds)

3.7.1 Local or mean dispersion fit

A local smoothed dispersion fit is automatically substitited in the case that the parametric curve doesn't
fit the observed dispersion mean relationship. This can be prespecified by providing the argument
fitType="local" to either DESeq or estimateDispersions. Additionally, using the mean of gene-
wise disperion estimates as the fitted value can be specified by providing the argument fitType="mean".

3.7.2 Supply a custom dispersion fit

Any fitted values can be provided during dispersion estimation, using the lower-level functions described
in the manual page for estimateDispersionsGeneEst. In the code chunk below, we store the gene-
wise estimates which were already calculated and saved in the metadata column dispGeneEst. Then
we calculate the median value of the dispersion estimates above a threshold, and save these values
as the fitted dispersions, using the replacement function for dispersionFunction. In the last line,
the function estimateDispersionsMAP, uses the fitted dispersions to generate maximum a posteriori
(MAP) estimates of dispersion.

Differential analysis of count data — the DESeq2 package 25

1e+00
|

dispersion
1e-04

® fene-est
& fitted
1. # final

I] | |
1e-01 1e+01 1e+03 1e+03

1e-08

mean of normalized counts

Figure 9: Dispersion plot. The dispersion estimate plot shows the gene-wise estimates (black), the fitted
values (red), and the final maximum a posteriori estimates used in testing (blue).

ddsCustom <- dds

useForMedian <- mcols(ddsCustom)$dispGeneEst > 1le-7

medianDisp <- median(mcols(ddsCustom)$dispGeneEst [useForMedian] ,na.rm=TRUE)
dispersionFunction(ddsCustom) <- function(mu) medianDisp

ddsCustom <- estimateDispersionsMAP(ddsCustom)

3.8 Independent filtering of results

The results function of the DESeq2 package performs independent filtering by default using the mean
of normalized counts as a filter statistic. A threshold on the filter statistic is found which optimizes
the number of adjusted p values lower than a significance level alpha (we use the standard variable
name for significance level, though it is unrelated to the dispersion parameter «). The theory behind
independent filtering is discussed in greater detail in Section 4.6. The adjusted p values for the genes
which do not pass the filter threshold are set to NA.

The independent filtering is performed using the filtered p function of the genefilter package, and
all of the arguments of filtered p can be passed to the results function. The filter threshold value
and the number of rejections at each quantile of the filter statistic are available as attributes of the
object returned by results. For example, we can easily visualize the optimization by plotting the
filterNumRej attribute of the results object, as seen in Figure 10.

http://bioconductor.org/packages/release/bioc/html/genefilter.html

Differential analysis of count data — the DESeq2 package 26

n 0°%0
o o © \
o
S —Ho° ©
~ \
g o
o — o
= o
i \
= o o
(O] o —
pust Ire) \
= o
8 \
] o
L N
o (o]
E 8 4 \
c ™ o
\
] o
\
8_ o
— I I I I

0.2 0.4 0.6 0.8

theta

Figure 10: Independent filtering. The results function maximizes the number of rejections (adjusted p
value less than a significance level), over theta, the quantiles of a filtering statistic (in this case, the mean of
normalized counts).

attr(res,"filterThreshold")

46.5),
#* 9.2

plot(attr(res,"filterNumRej") ,type="b",
ylab="number of rejections")

Independent filtering can be turned off by setting independentFiltering to FALSE.

resNoFilt <- results(dds, independentFiltering=FALSE)
addmargins(table(filtering=(res$padj < .1), noFiltering=(resNoFilt$padj < .1)))

Hit noFiltering

filtering FALSE TRUE Sum
" FALSE 6896 0 6896
TRUE 108 694 802

#it Sum 7004

694 7698

Differential analysis of count data — the DESeq2 package 27

3.9 Tests of log2 fold change above or below a threshold

It is also possible to provide thresholds for constructing Wald tests of significance. Two arguments to
the results function allow for threshold-based Wald tests: 1fcThreshold, which takes a numeric
of a non-negative threshold value, and altHypothesis, which specifies the kind of test. Note that
the alternative hypothesis is specified by the user, i.e. those genes which the user is interested in
finding, and the test provides p values for the null hypothesis, the complement of the set defined by the
alternative. The altHypothesis argument can take one of the following four values, where (is the
log2 fold change specified by the name argument:

e greaterAbs - || > lfcThreshold - tests are two-tailed

e lessAbs - || < lfcThreshold - p values are the maximum of the upper and lower tests
e greater - J > lfcThreshold

e less - § < —lfcThreshold

The test altHypothesis="lessAbs" requires that the user have run DESeq with the argument
betaPrior=FALSE. To understand the reason for this requirement, consider that during hypothesis
testing, the null hypothesis is favored unless the data provide strong evidence to reject the null. For this
test, including a zero-centered prior on log fold change would favor the alternative hypothesis, shrinking
log fold changes toward zero. Removing the prior on log fold changes for tests of small log fold change
allows for detection of only those genes where the data alone provides evidence against the null.

The four possible values of altHypothesis are demonstrated in the following code and visually by
MA-plots in Figure 11. First we run DESeq and specify betaPrior=FALSE in order to demonstrate
altHypothesis="lessAbs".

ddsNoPrior <- DESeq(dds, betaPrior=FALSE)

In order to produce results tables for the following tests, the same arguments (except ylim) would be
provided to the results function.

par (mfrow=c(2,2) ,mar=c(2,2,1,1))
yl <- c(-2.5,2.5)

resGA <- results(dds, lfcThreshold=.5, altHypothesis="greaterAbs")
resLA <- results(ddsNoPrior, 1lfcThreshold=.5, altHypothesis="lessAbs")
resG <- results(dds, lfcThreshold=.5, altHypothesis="greater")

resL <- results(dds, lfcThreshold=.5, altHypothesis="less")

plotMA(resGA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue",lwd=2)
plotMA(resLA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue",lwd=2)
plotMA(resG, ylim=yl)
abline(h=.5,col="dodgerblue",lwd=2)
plotMA(resL, ylim=yl)
abline(h=-.5,col="dodgerblue",lwd=2)

Differential analysis of count data — the DESeq2 package 28

T T T | T T T]
1e{1 1e+03 1401 1e+03

Figure 11: MA-plots of tests of log2 fold change with respect to a threshold value. Going left to
right across rows, the tests are for altHypothesis = "greaterAbs", "lessAbs", "greater", and "less".

3.10 Access to all calculated values

All row-wise calculated values (intermediate dispersion calculations, coefficients, standard errors, etc.)
are stored in the DESeqDataSet object, e.g. dds in this vignette. These values are accessible by calling
mcols on dds. Descriptions of the columns are accessible by two calls to mcols.

mcols(dds,use.names=TRUE) [1:4,1:4]

DataFrame with 4 rows and 4 columns

#it gene baseMean DbaseVar allZero
#it <factor> <numeric> <numeric> <logical>
FBgn0000003 FBgn0000003 0.159 0.178 FALSE
FBgn0000008 FBgn0000008 52.226 154.611 FALSE
FBgn0000014 FBgn0000014 0.390 0.444 FALSE
FBgn0000015 FBgn0000015 0.905 0.799 FALSE

here using substr() only for display purposes
substr (names (mcols(dds)),1,10)

[1] "gene" "baseMean" "baseVar" "allZero" "dispGeneEs"
[6] "dispFit" "dispFit.1" '"dispersion" "dispIter" "dispOutlie"
[11] "dispMAP" "Intercept" ‘"conditionu" "conditiont" "SE_Interce"

[16] "SE_conditi" "SE_conditi" "MLE_Interc" "MLE_condit" "WaldStatis"

Differential analysis of count data — the DESeq2 package 29

[21] "WaldStatis" "WaldStatis" "WaldPvalue" "WaldPvalue" "WaldPvalue"
[26] "betaConv" "betalter" "deviance" "maxCooks"

mcols(mcols(dds), use.names=TRUE) [1:4,]

DataFrame with 4 rows and 2 columns

#Hit type description
Hit <character> <character>
gene input

baseMean intermediate mean of normalized counts for all samples
baseVar intermediate variance of normalized counts for all samples
allZero intermediate all counts for a gene are zero

The mean values p;; = s;q;; and the Cook’s distances for each gene and sample are stored as matrices
in the assays slot:

head(assays(dds) [["mu"]])

#i# treatedlfb treated2fb treated3fb untreatedlfb untreated2fb
FBgn0000003 0.232 0.121 0.138 0.158 0.249
FBgn0000008 79.292 41.141 46.989 54 .327 85.814
FBgn0000014 0.593 0.308 0.352 0.409 0.646
FBgn0000015 1.286 0.667 0.762 0.920 1.454
FBgn0000017 3208.082 1664 .535 1901.116 2659.803 4201.380
FBgn0000018 322.081 167.114 190.866 240.411 379.749
H##t untreated3fb untreated4fb
FBgn0000003 0.107 0.118
FBgn0000008 36.827 40.551
FBgn0000014 0.277 0.305
FBgn0000015 0.624 0.687
FBgn0000017 1803.040 1985.350
FBgn0000018 162.971 179.449

head (assays(dds) [["cooks"]])

treatedlfb treated2fb treated3fb untreatedlfb untreated2fb
FBgn0000003 0.101998 0.04042 1.93004 0.0303 0.110299
FBgn0000008 0.001620 0.05295 0.03060 0.0522 0.005124
FBgn0000014 1.497660 0.10161 0.12471 0.0947 0.186632
FBgn0000015 0.026893 0.16865 0.02101 0.1773 0.031450
FBgn0000017 0.000589 0.00026 0.00644 0.0516 0.078386
FBgn0000018 0.366540 0.13013 0.08158 0.3468 0.000764
H##t untreated3fb untreated4fb
FBgn0000003 0.0116 0.01461
FBgn0000008 0.4133 0.25894
FBgn0000014 0.3461 0.05952

FBgn0000015 0.0362 0.42175

Differential analysis of count data — the DESeq2 package 30

FBgn0000017 0.1600 0.14814
FBgn0000018 0.2147 0.00709

The dispersions «; can be accessed with the dispersions function.

head(dispersions(dds))
[1] 10.0000 0.0535 6.3733 1.7137 0.0133 0.0219

head(mcols(dds)$dispersion)
[1] 10.0000 0.0535 6.3733 1.7137 0.0133 0.0219

The size factors s; are accessible via sizeFactors:

sizeFactors(dds)

#it treatedlfb treated2fb treated3fb untreatedlfb untreated2fb untreated3fb

it 1.512 0.784 0.896 1.050 1.659 0.712
untreated4fb
#it 0.784

For advanced users, we also include a convenience function coef for extracting the matrix of coefficients
[Bir] for all genes i and parameters 7, as in the formula in Section 4.1. This function can also return a
matrix of standard errors, see 7coef. The columns of this matrix correspond to the effects returned by
resultsNames. Note that the results function is best for building results tables with p values and
adjusted p values.

head(coef (dds))

#it Intercept conditionuntreated conditiontreated
FBgn0000003 -2.719 -0.01727 0.01727
FBgn0000008 5.703 -0.00987 0.00987
FBgn0000014 -1.355 -0.00593 0.00593
FBgn0000015 -0.211 0.02157 -0.02157
FBgn0000017 11.179 0.12770 -0.12769
FBgn0000018 7.787 0.05193 -0.05193

The beta prior variance o2 is stored as an attribute of the DESeqDataSet:

attr(dds, "betaPriorVar")

Intercept conditionuntreated conditiontreated
#it 1.00e+06 1.05e-01 1.05e-01

The dispersion prior variance o2 is stored as an attribute of the dispersion function:
dispersionFunction(dds)

function (q)
coefs[1] + coefs[2]/q

Differential analysis of count data — the DESeq2 package 31

<environment: Oxcd60f00>
attr(,"coefficients")

asymptDisp extraPois

0.0155 2.5562

attr(,"fitType")

[1] "parametric"

attr(,"varLogDispEsts")
[1] 0.971

attr(,"dispPriorVar")

[1] 0.481

attr(dispersionFunction(dds), "dispPriorVar")

[1] 0.481

3.11 Sample-/gene-dependent normalization factors

In some experiments, there might be gene-dependent dependencies which vary across samples. For
instance, GC-content bias or length bias might vary across samples coming from different labs or
processed at different times. We use the terms “normalization factors” for a gene x sample matrix,
and “size factors” for a single number per sample. Incorporating normalization factors, the mean
parameter 1i;; from Section 4.1 becomes:

wij = NFijqij

with normalization factor matrix NV F' having the same dimensions as the counts matrix K. This matrix
can be incorporated as shown below. We recommend providing a matrix with row-wise geometric means
of 1, so that the mean of normalized counts for a gene is close to the mean of the unnormalized counts.
This can be accomplished by dividing out the current row geometric means.

normFactors <- normFactors / exp(rowMeans(log(normFactors)))
normalizationFactors(dds) <- normFactors

These steps then replace estimateSizeFactors in the steps described in Section 3.1. Normalization
factors, if present, will always be used in the place of size factors.

The methods provided by the cqn or EDASeq packages can help correct for GC or length biases. They
both describe in their vignettes how to create matrices which can be used by DESeq2. From the
formula above, we see that normalization factors should be on the scale of the counts, like size factors,
and unlike offsets which are typically on the scale of the predictors (i.e. the logarithmic scale for the
negative binomial GLM). At the time of writing, the transformation from the matrices provided by these
packages should be:

cqnOffset <- cqnObject$glm.offset
cqnNormFactors <- exp(cqnOffset)
EDASeqNormFactors <- exp(-1 * EDASeqOffset)

http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html

Differential analysis of count data — the DESeq2 package

32

Differential analysis of count data — the DESeq2 package 33

4 Theory behind DESeq2

4.1 The DESeq2 model

The DESeq2 model and all the steps taken in the software are described in detail in our pre-print [1],
and we include the formula and descriptions in this section as well. The differential expression analysis
in DESeq2 uses a generalized linear model of the form:

Kij ~ NB(pij, o)
Hij = 5345

logy(gij) = ;.5

where counts K;; for gene 7, sample j are modeled using a negative binomial distribution with fitted
mean i;; and a gene-specific dispersion parameter o;. The fitted mean is composed of a sample-specific
size factor s;° and a parameter ¢;; proportional to the expected true concentration of fragments for
sample j. The coefficients 3; give the log2 fold changes for gene i for each column of the model matrix
X.

By default these log2 fold changes are the maximum a priori estimates after incorporating a zero-
centered Normal prior — in the software referrred to as a [5-prior — hence DESeq2provides “moderated”
log2 fold change estimates. Dispersions are estimated using expected mean values from the maximum
likelihood estimate of log2 fold changes, and optimizing the Cox-Reid adjusted profile likelihood, as
first implemented for RNA-Seq data in edgeR [7, 8]. The steps performed by the DESeq function are
documented in its manual page; briefly, they are:

1. estimation of size factors s; by estimateSizeFactors
2. estimation of dispersion «; by estimateDispersions
3. negative binomial GLM fitting for 3; and Wald statistics by nbinomWaldTest

For access to all the values calculated during these steps, see Section 3.10

4.2 Changes compared to the DESeq package

The main changes in the package DESeq2, compared to the (older) version DESeq, are as follows:

e SummarizedExperiment is used as the superclass for storage of input data, intermediate calcula-
tions and results.

e Maximum a posteriori estimation of GLM coefficients incorporating a zero-centered Normal prior
with variance estimated from data (equivalent to Tikhonov/ridge regularization). This adjustment
has little effect on genes with high counts, yet it helps to moderate the otherwise large variance
in log2 fold change estimates for genes with low counts or highly variable counts.

5The model can be generalized to use sample- and gene-dependent normalization factors, see Appendix 3.11.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html

Differential analysis of count data — the DESeq2 package 34

e Maximum a posteriori estimation of dispersion replaces the sharingMode options fit-only or
maximum of the previous version of the package. This is similar to the dispersion estimation
methods of DSS [9].

e All estimation and inference is based on the generalized linear model, which includes the two
condition case (previously the exact test was used).

e The Wald test for significance of GLM coefficients is provided as the default inference method,
with the likelihood ratio test of the previous version still available.

e It is possible to provide a matrix of sample-/gene-dependent normalization factors (Section 3.11).

e Automatic independent filtering on the mean of normalized counts (Section 4.6).

e Automatic outlier detection and handling (Section 4.3).

4.3 Count outlier detection

DESeq?2 relies on the negative binomial distribution to make estimates and perform statistical inference
on differences. While the negative binomial is versatile in having a mean and dispersion parameter,
extreme counts in individual samples might not fit well to the negative binomial. For this reason, we
perform automatic detection of count outliers. We use Cook’s distance, which is a measure of how
much the fitted coefficients would change if an individual sample were removed [10]. For more on the
implementation of Cook's distance see Section 3.5 and the manual page for the results function.
Below we plot the maximum value of Cook's distance for each row over the rank of the test statistic
to justify its use as a filtering criterion.

W <- res$stat

maxCooks <- apply(assays(dds) [["cooks"]],1,max)

idx <- !is.na(W)

plot(rank(W[idx]), maxCooks[idx], xlab="rank of Wald statistic",
ylab="maximum Cook’s distance per gene",
ylim=c(0,5), cex=.4, col=rgb(0,0,0,.3))

m <- ncol(dds)

p <=3

abline(h=qf (.99, p, m - p))

4.4 Contrasts

Contrasts can be calculated for a DESegDataSet object for which the GLM coefficients have already
been fit using the Wald test steps (DESeq with test="Wald" or using nbinomWaldTest). The vector
of coefficients (3 is left multiplied by the contrast vector ¢ to form the numerator of the test statistic.
The denominator is formed by multiplying the covariance matrix 3 for the coefficients on either side
by the contrast vector ¢. The square root of this product is an estimate of the standard error for the
contrast. The contrast statistic is then compared to a normal distribution as are the Wald statistics for
the DESeq2 package.

Differential analysis of count data — the DESeq2 package 35

2 o

[1E]

[#}]

o

a T LR
i k] L]
2 .

E =

™

w

£ o

o

&

E -

E

R

0 2000 G000 10000
rank of Wald statistic
Figure 12: Cook’s distance. Plot of the maximum Cook’s distance per gene over the rank of the Wald

statistics for the condition. The two regions with small Cook’s distances are genes with a single count in one
sample. The horizontal line is the default cutoff used for 7 samples and 3 estimated parameters.

4.5 Expanded model matrices

As mentioned in Section 3.2, DESeq2 uses “expanded model matrices” with the log2 fold change prior,
in order to produce log2 fold change estimates and test results which are independent of the choice
of base level. These model matrices differ from the standard model matrices, in that they have an
indicator column (and therefore a coefficient) for each level of factors in the design formula in addition
to an intercept. Expanded model matrices are not used without the log2 fold change prior or in the
case of designs with 2 level factors and an interaction term.

These matrices are therefore not full rank, but a coefficient vector [3; can still be found due to the zero-
centered prior on non-intercept coefficients. The prior variance for the log2 fold changes is calculated
by first generating maximum likelihood estimates for a standard model matrix. The prior variance for
each level of a factor is then set as the average of the mean squared maximum likelihood estimates for
each level and every possible contrast, such that that this prior value will be base level independent.
The contrast argument of the results function is again used in order to generate comparisons of
Interest.

Differential analysis of count data — the DESeq2 package 36

4.6 Independent filtering and multiple testing
4.6.1 Filtering criteria

The goal of independent filtering is to filter out those tests from the procedure that have no, or little
chance of showing significant evidence, without even looking at their test statistic. Typically, this results
in increased detection power at the same experiment-wide type | error. Here, we measure experiment-
wide type | error in terms of the false discovery rate.

A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,

2. is correlated with the test statistic under the alternative, and

3. does not notably change the dependence structure —if there is any— between the tests that pass
the filter, compared to the dependence structure between the tests before filtering.

The benefit from filtering relies on property 2, and we will explore it further in Section 4.6.2. lts
statistical validity relies on property 1 — which is simple to formally prove for many combinations of
filter criteria with test statistics— and 3, which is less easy to theoretically imply from first principles,
but rarely a problem in practice. We refer to [11] for further discussion of this topic.

A simple filtering criterion readily available in the results object is the mean of normalized counts
irrespective of biological condition (Figure 13). Genes with very low counts are not likely to see
significant differences typically due to high dispersion. For example, we can plot the —log,, p values
from all genes over the normalized mean counts.

plot(res$baseMean+l, -loglO(res$pvalue),
log="x", xlab="mean of normalized counts",
ylab=expression(-log[10] (pvalue)),
ylim=c(0,30),
cex=.4, col=rgb(0,0,0,.3))

4.6.2 Why does it work?

Consider the p value histogram in Figure 14. It shows how the filtering ameliorates the multiple testing
problem — and thus the severity of a multiple testing adjustment — by removing a background set of
hypotheses whose p values are distributed more or less uniformly in [0, 1].

use <- res$baseMean > attr(res,"filterThreshold")
table(use)

use
FALSE TRUE
##t 6728 7742

hl <- hist(res$pvalue[!use], breaks=0:50/50, plot=FALSE)
h2 <- hist(res$pvalue[use], breaks=0:50/50, plot=FALSE)
colori <- c(‘do not pass‘="khaki", ‘pass‘="powderblue")

Differential analysis of count data — the DESeq2 package 37

30
I

20 25

—logq (pvalue)
10 15

1 100 10000

mean of normalized counts

Figure 13: Mean counts as a filter statistic. The mean of normalized counts provides an independent
statistic for filtering the tests. It is independent because the information about the variables in the design
formula is not used. By filtering out genes which fall on the left side of the plot, the majority of the low p
values are kept.

barplot(height = rbind(hl$counts, h2$counts), beside = FALSE,
col = colori, space = 0, main = "", ylab="frequency")
text(x = c(0, length(hil$counts)), y = 0, label = paste(c(0,1)),
adj = c(0.5,1.7), xpd=NA)
legend ("topright", fill=rev(colori), legend=rev(names(colori)))

4.6.3 Diagnostic plots for multiple testing

The Benjamini-Hochberg multiple testing adjustment procedure [12] has a simple graphical illustration,
which we produce in the following code chunk. Its result is shown in the left panel of Figure 15.

resFilt <- res[use & !is.na(res$pvalue),]
orderInPlot <- order(resFilt$pvalue)

showInPlot <- (resFilt$pvalue[orderInPlot] <= 0.08)
alpha <- 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot] [showInPlot],

pch=".", xlab = expression(rank(p[i])), ylab=expression(p[il))

Differential analysis of count data — the DESeq2 package 38

O pass
S _ O do not pass
(5]
=
5 &
& (1]
i
3
i
£ 3
L=]
i —
[n]
D -

Figure 14: Histogram of p values for all tests (res$pvalue). The area shaded in blue indicates the subset
of those that pass the filtering, the area in khaki those that do not pass.

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)

Schweder and Spjgtvoll [13] suggested a diagnostic plot of the observed p-values which permits estima-
tion of the fraction of true null hypotheses. For a series of hypothesis tests Hy, ..., H,, with p-values
pi, they suggested plotting

(1 —pi;, N(p;)) foriel,...,m, (2)

where N(p) is the number of p-values greater than p. An application of this diagnostic plot to
resFilt$pvalue is shown in the right panel of Figure 15. When all null hypotheses are true, the
p-values are each uniformly distributed in [0, 1], Consequently, the cumulative distribution function
of (p1,...,pm) is expected to be close to the line F(t) = t. By symmetry, the same applies to

(1 =p1,...,1—pm). When (without loss of generality) the first mq null hypotheses are true and the
other m — my are false, the cumulative distribution function of (1 —py,...,1— p,,,) is again expected
to be close to the line Fy(t) = t. The cumulative distribution function of (1 — ppg41,---s 1 — Pm), ON

the other hand, is expected to be close to a function F)(t) which stays below Fj but shows a steep
increase towards 1 as t approaches 1. In practice, we do not know which of the null hypotheses are
true, so we can only observe a mixture whose cumulative distribution function is expected to be close
to

m — 1y

F(t) = %Fo(t) + Fi(t). (3)

Such a situation is shown in the right panel of Figure 15. If Fy(t)/Fy(t) is small for small ¢, then the
mixture fraction ™% can be estimated by fitting a line to the left-hand portion of the plot, and then

Differential analysis of count data — the DESeq2 package 39

noting its height on the right. Such a fit is shown by the red line in the right panel of Figure 15.

plot(1-resFilt$pvalue [orderInPlot],
(length(resFilt$pvalue)-1):0, pch=".",
xlab=expression(1-p[i]), ylab=expression(N(p[i])))
abline(a=0, slope, col="red3", lwd=2)

2
==} -
=]]
D' =]
(=)
w (=T
o (=)
C:; [1+]
o+ = =
£ 2 - £ 327
=1 = =+
(=)
(37}
[=J S
L= 4]
(=]
=2 o -
= T T T T T T T T T [
0 500 1000 1500 0.0 0.2 0.4 0.6 0.5 1.0
rank(p;) 1—pi

Figure 15: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [12]. The black
line shows the p-values (y-axis) versus their rank (z-axis), starting with the smallest p-value from the left, then
the second smallest, and so on. Only the first 1595 p-values are shown. The red line is a straight line with
slope a/n, where n = 7698 is the number of tests, and a = 0.1 is a target false discovery rate (FDR). FDR
is controlled at the value « if the genes are selected that lie to the left of the rightmost intersection between
the red and black lines: here, this results in 802 genes. Right: Schweder and Spjgtvoll plot, as described in
the text. For both of these plots, the p-values resFilt$pvalues from Section 4.6.1 were used as a starting
point. Analogously, one can produce these types of plots for any set of p-values, for instance those from the
previous sections.

5 Frequently asked questions

5.1 How can | get support for DESeq2?
We welcome questions about our software, and want to ensure that we eliminate issues if and when
they appear. We have a few requests to optimize the process:

e all questions should take place on the Bioconductor support site: https://support.bioconductor.
org, which serves as a repository of questions and answers. This helps to save the developers'’

https://support.bioconductor.org
https://support.bioconductor.org

Differential analysis of count data — the DESeq2 package 40

time in responding to similar questions. Make sure to tag your post with “deseq2”. It is often
very helpful in addition to describe the aim of your experiment.

e before posting, first search the Bioconductor support site mentioned above for past threads which
might have answered your question.

e if you have a question about the behavior of a function, read the sections of the manual page for
this function by typing a question mark and the function name, e.g. ?results. We spend a lot
of time documenting individual functions and the exact steps that the software is performing.

e include all of your R code, especially the creation of the DESeqDataSet and the design formula.
Include complete warning or error messages, and conclude your message with the full output of
sessionInfo().

e if possible, include the output of as.data.frame(colData(dds)), so that we can have a sense
of the experimental setup. If this contains confidential information, you can replace the levels of
those factors using levels().

5.2 Why are some p values set to NA?

See the details in Section 1.4.3.

5.3 How do | use the variance stabilized or rlog transformed data for dif-
ferential testing?

The variance stabilizing and rlog transformations are provided for applications other than differential
testing, for example clustering of samples or other machine learning applications. For differential testing
we recommend the DESeq function applied to raw counts as outlined in Section 1.3.

5.4 Can | use DESeq2 to analyze paired samples?

Yes, you should use a multi-factor design which includes the sample information as a term in the design
formula. This will account for differences between the samples while estimating the effect due to the
condition. The condition of interest should go at the end of the design formula. See Section 1.5.

5.5 Can | run DESeq2 to contrast the levels of 100 groups?

DESeq2 will work with any kind of design specified using the R formula. We enourage users to consider
exploratory data analysis such as principal components analysis as described in Section 2.2.3, rather
than performing statistical testing of all combinations of dozens of groups.

As a speed concern with fitting very large models, note that each additional level of a factor in the
design formula adds another parameter to the GLM which is fit by DESeq2. Users might consider first
removing genes with very few reads, e.g. genes with row sum of 1, as this will speed up the fitting
procedure.

Differential analysis of count data — the DESeq2 package 41

5.6 Can | use DESeq2 to analyze a dataset without replicates?

If a DESeqDataSet is provided with an experimental design without replicates, a message is printed,
that the samples are treated as replicates for estimation of dispersion. More details can be found in the
manual page for ?DESeq.

5.7 How can | include a continuous covariate in the design formula?

Continuous covariates can be easily included in the design formula in the same manner as factorial
covariates. Continuous covariates might make sense in certain experiments, where a constant fold
change might be expected for each unit of the covariate. However, in many cases, more meaningful
results can be obtained by cutting continuous covariates into a factor defined over a small number of
bins (e.g. 3-5). In this way, the average effect of each group is controlled for, regardless of the trend
over the continuous covariates. In R, numeric vectors can be converted into factors using the function
cut.

5.8 What are the exact steps performed by DESeq()?

See the manual page for DESeq, which links to the subfunctions which are called in order, where
complete details are listed.

6 Acknowledgments

We have benefited in the development of DESeq2 from the help and feedback of many individuals,
including but not limited to: The Bionconductor Core Team, Alejandro Reyes, Andrzej Oles, Aleksandra
Pekowska, Felix Klein, Vince Carey, Devon Ryan, Steve Lianoglou, Jessica Larson, Christina Chaivorapol,
Pan Du, Richard Bourgon, Willem Talloen, Elin Videvall, Hanneke van Deutekom, Todd Burwell.

7 Session Info

R version 3.1.1 (2014-07-10), x86_64-unknown-linux-gnu

e lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: Biobase 2.25.0, BiocGenerics 0.11.5, DESeq2 1.5.71, GenomelnfoDb 1.1.22,

GenomicRanges 1.17.42, IRanges 1.99.28, RColorBrewer 1.0-5, Rcpp 0.11.2,

RcppArmadillo 0.4.450.1.0, S4Vectors 0.2.4, airway 0.99.3, ggplot2 1.0.0, gplots 2.14.2,

knitr 1.6, pasilla 0.5.0, vsn 3.33.0

Differential analysis of count data — the DESeq2 package 42

e Loaded via a namespace (and not attached): AnnotationDbi 1.27.16, BBmisc 1.7,
BatchJobs 1.4, Bioclnstaller 1.15.5, BiocParallel 0.99.22, BiocStyle 1.3.15, DBI 0.3.1,
DESeq 1.17.0, Formula 1.1-2, Hmisc 3.14-5, KernSmooth 2.23-13, MASS 7.3-34,
RSQLite 0.11.4, XML 3.98-1.1, XVector 0.5.8, acepack 1.3-3.3, affy 1.43.3, affyio 1.33.1,
annotate 1.43.5, base64enc 0.1-2, bitops 1.0-6, brew 1.0-6, caTools 1.17.1, checkmate 1.4,
cluster 1.15.3, codetools 0.2-9, colorspace 1.2-4, digest 0.6.4, evaluate 0.5.5, fail 1.2,
foreach 1.4.2, foreign 0.8-61, formatR 1.0, futile.logger 1.3.7, futile.options 1.0.0, gdata 2.13.3,
genefilter 1.47.6, geneplotter 1.43.0, grid 3.1.1, gtable 0.1.2, gtools 3.4.1, highr 0.3,
iterators 1.0.7, labeling 0.3, lambda.r 1.1.6, lattice 0.20-29, latticeExtra 0.6-26, limma 3.21.19,
locfit 1.5-9.1, munsell 0.4.2, nnet 7.3-8, plyr 1.8.1, preprocessCore 1.27.9, proto 0.3-10,
reshape2 1.4, rpart 4.1-8, scales 0.2.4, sendmailR 1.2-1, splines 3.1.1, stringr 0.6.2,
survival 2.37-7, tools 3.1.1, xtable 1.7-4, zlibbioc 1.11.1

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and
dispersion for RNA-Seq data with DESeq2. bioRxiv preprint, 2014. URL: http://dx.doi.org/
10.1101/002832.

Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq - A Python framework to work
with high-throughput sequencing data. bioRxiv preprint, 2014. URL: http://dx.doi.org/10.
1101/002824.

A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and
B. R. Graveley. Conservation of an RNA regulatory map between Drosophila and mammals.
Genome Research, pages 193-202, 2011. URL: http://genome.cshlp.org/cgi/doi/10.1101/
gr.108662.110, doi:10.1101/gr.108662.110

Robert Tibshirani. Estimating transformations for regression via additivity and variance stabiliza-
tion. Journal of the American Statistical Association, 83:394—405, 1988.

Wolfgang Huber, Anja von Heydebreck, Holger Sultmann, Annemarie Poustka, and Martin Vingron.
Parameter estimation for the calibration and variance stabilization of microarray data. Statistical
Applications in Genetics and Molecular Biology, 2(1):Article 3, 2003.

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11:R106, 2010. URL: http://genomebiology.com/2010/11/10/R106.

D. R. Cox and N. Reid. Parameter orthogonality and approximate conditional inference. Journal of
the Royal Statistical Society, Series B, 49(1):1-39, 1987. URL: http://www. jstor.org/stable/
2345476.

Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research,
40:4288-4297, January 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22287627, doi:
10.1093/nar/gks042.

http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1101/002824
http://dx.doi.org/10.1101/002824
http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://dx.doi.org/10.1101/gr.108662.110
http://genomebiology.com/2010/11/10/R106
http://www.jstor.org/stable/2345476
http://www.jstor.org/stable/2345476
http://www.ncbi.nlm.nih.gov/pubmed/22287627
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/nar/gks042

Differential analysis of count data — the DESeq2 package 43

[9]

[10]

[11]

[12]

[13]

Hao Wu, Chi Wang, and Zhijin Wu. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics, September 2012. URL: http://dx.doi.
org/10.1093/biostatistics/kxs033, doi:10.1093/biostatistics/kxs033.

R. Dennis Cook. Detection of Influential Observation in Linear Regression. Technometrics, February
1977.

Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering increases
detection power for high-throughput experiments. PNAS, 107(21):9546-9551, 2010. URL:
http://www.pnas.org/content/107/21/9546.long.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society B, 57:289-300, 1995.

T. Schweder and E. Spjotvoll. Plots of P-values to evaluate many tests simultaneously. Biometrika,
69:493-502, 1982. doi:10.1093/biomet/69.3.493.

http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
http://www.pnas.org/content/107/21/9546.long
http://dx.doi.org/10.1093/biomet/69.3.493

	1 Standard workflow
	1.1 Quick start
	1.2 Input data
	1.2.1 Why raw counts?
	1.2.2 SummarizedExperiment input
	1.2.3 Count matrix input
	1.2.4 HTSeq input
	1.2.5 Note on factor levels
	1.2.6 Collapsing technical replicates
	1.2.7 About the pasilla dataset

	1.3 Differential expression analysis
	1.4 Exploring and exporting results
	1.4.1 MA-plot
	1.4.2 Plot counts
	1.4.3 More information on results columns
	1.4.4 Exporting results to HTML or CSV files

	1.5 Multi-factor designs

	2 Data transformations and visualization
	2.1 Count data transformations
	2.1.1 Blind dispersion estimation
	2.1.2 Extracting transformed values
	2.1.3 Regularized log transformation
	2.1.4 Variance stabilizing transformation
	2.1.5 Effects of transformations on the variance

	2.2 Data quality assessment by sample clustering and visualization
	2.2.1 Heatmap of the count matrix
	2.2.2 Heatmap of the sample-to-sample distances
	2.2.3 Principal component plot of the samples

	3 Variations to the standard workflow
	3.1 Wald test individual steps
	3.2 Contrasts
	3.3 Interactions
	3.4 Time-series experiments
	3.5 Approach to count outliers
	3.6 Likelihood ratio test
	3.7 Dispersion plot and fitting alternatives
	3.7.1 Local or mean dispersion fit
	3.7.2 Supply a custom dispersion fit

	3.8 Independent filtering of results
	3.9 Tests of log2 fold change above or below a threshold
	3.10 Access to all calculated values
	3.11 Sample-/gene-dependent normalization factors

	4 Theory behind DESeq2
	4.1 The DESeq2 model
	4.2 Changes compared to the DESeq package
	4.3 Count outlier detection
	4.4 Contrasts
	4.5 Expanded model matrices
	4.6 Independent filtering and multiple testing
	4.6.1 Filtering criteria
	4.6.2 Why does it work?
	4.6.3 Diagnostic plots for multiple testing

	5 Frequently asked questions
	5.1 How can I get support for DESeq2?
	5.2 Why are some p values set to NA?
	5.3 How do I use the variance stabilized or rlog transformed data for differential testing?
	5.4 Can I use DESeq2 to analyze paired samples?
	5.5 Can I run DESeq2 to contrast the levels of 100 groups?
	5.6 Can I use DESeq2 to analyze a dataset without replicates?
	5.7 How can I include a continuous covariate in the design formula?
	5.8 What are the exact steps performed by DESeq()?

	6 Acknowledgments
	7 Session Info

