[Bioc-devel] The story of tracing a derfinder bug on OSX that sometimes popped up, sometimes it didn't. Related to IRanges/S4Vectors '$<-'

Martin Morgan martin.morgan at roswellpark.org
Wed Mar 22 11:36:19 CET 2017


On 03/22/2017 06:17 AM, Martin Maechler wrote:
>>>>>> Andrzej Oleś <andrzej.oles at gmail.com>
>>>>>>     on Wed, 22 Mar 2017 10:29:57 +0100 writes:
>
>     > Just for the record, on R-3.3.2 Herve's code fails with the following error:
>     > Error in x[TRUE] <- new("A") :
>     > incompatible types (from S4 to logical) in subassignment type fix
>
> yes, (of course).... and I would be interested in a small
> reproducible example which uses _valid_ code.
> We have seen such examples with something (more complicated
> than, but basically like)
>
>   df <- data.frame(x=1:5, y=5:1, m=matrix(-pi*1:30, 5,6))
>   M <- Matrix::Matrix(exp(0:3),2)
>   df[1:2,1:2] <- M
>
> which actually calls `[<-`, and then `[<-.data.frame`  and
> always works for me but does seg.fault (in the CRAN checks of
> package FastImputation (on 3 of the dozen platforms,
> https://cran.r-project.org/web/checks/check_results_FastImputation.html
>
> one of them is
>
>  https://www.r-project.org/nosvn/R.check/r-devel-macos-x86_64-clang/FastImputation-00check.html
>
> I strongly suspect this is the same bug as yours, but for a case
> where the correct behavior is *not* giving an error.
>
> I have also written and shown  Herve's example  to the R-core team.

On Linux, if I run Leonardo's or Martin's example under gctorture(TRUE) 
I see a PROTECT problem; I don't see this with Herve's code, and I don't 
think his code goes through this execution path.

e.g.

 > library(Matrix)
 > gctorture(TRUE)
 >   df <- data.frame(x=1:5, y=5:1, m=matrix(-pi*1:30, 5,6))
 >   M <- Matrix::Matrix(exp(0:3),2)
 >   df[1:2,1:2] <- M
Error in `[<-.data.frame`(`*tmp*`, 1:2, 1:2, value = <S4 object of class 
"dgeMatrix">) :
   unimplemented type 'integer' in 'coerceToInteger'

This is addressed in r72383.

R-devel$ svn diff -c72383
Index: src/main/array.c
===================================================================
--- src/main/array.c	(revision 72382)
+++ src/main/array.c	(revision 72383)
@@ -436,8 +436,12 @@
         DispatchOrEval(call, op, "length", args, rho, &ans, 0, 1)) {
  	if (length(ans) == 1 && TYPEOF(ans) == REALSXP) {
  	    double d = REAL(ans)[0];
-	    if (R_FINITE(d) && d >= 0. && d <= INT_MAX && floor(d) == d)
-		return coerceVector(ans, INTSXP);
+	    if (R_FINITE(d) && d >= 0. && d <= INT_MAX && floor(d) == d) {
+                PROTECT(ans);
+                ans = coerceVector(ans, INTSXP);
+                UNPROTECT(1);
+                return(ans);
+            }
  	}
  	return(ans);
      }


Martin Morgan

>
> Unfortunately, I have no platform where I can trigger the bug.
> Martin
>
>
>
>     > Cheers,
>     > Andrzej
>
>
>
>     > On Wed, Mar 22, 2017 at 1:28 AM, Martin Morgan <
>     > martin.morgan at roswellpark.org> wrote:
>
>     >> On 03/21/2017 08:21 PM, Hervé Pagès wrote:
>     >>
>     >>> Hi Leonardo,
>     >>>
>     >>> Thanks for hunting down and isolating that bug! I tried to simplify
>     >>> your code even more and was able to get a segfault with just:
>     >>>
>     >>> setClass("A", representation(stuff="numeric"))
>     >>> x <- logical(10)
>     >>> x[TRUE] <- new("A")
>     >>>
>     >>> I get the segfault about 50% of the time on a fresh R session on Mac.
>     >>> I tried this with R 3.3.3 on Mavericks, and with R devel (r72372)
>     >>> on El Capitan. I get the segfault on both.
>     >>>
>     >>> So it looks like a bug in the `[<-` primitive to me (subassignment).
>     >>>
>     >>
>     >> Any insight from
>     >>
>     >> R -d valgrind -f herve.R
>     >>
>     >> where herve.R contains the code above?
>     >>
>     >> Martin
>     >>
>     >>
>     >>
>     >>> Cheers,
>     >>> H.
>     >>>
>     >>> On 03/21/2017 03:06 PM, Leonardo Collado Torres wrote:
>     >>>
>     >>>> Hi bioc-devel,
>     >>>>
>     >>>> This is a story about a bug that took me a long time to trace. The
>     >>>> behaviour was really weird, so I'm sharing the story in case this
>     >>>> helps others in the future. I was originally writing it to request
>     >>>> help, but then I was able to find the issue ^^. The story ends right
>     >>>> now with code that will reproduce the problem with '$<-' from
>     >>>> IRanges/S4Vectors.
>     >>>>
>     >>>>
>     >>>>
>     >>>>
>     >>>> During this Bioc cycle, frequently my package derfinder has failed to
>     >>>> pass R CMD check in OSX. The error is always the same when it appears
>     >>>> and sometimes it shows up in release, but not devel and viceversa.
>     >>>> Right now (3/21/2017) it's visible in both
>     >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu
>     >>>> ctor.org_checkResults_release_bioc-2DLATEST_derfinder_
>     >>>> morelia-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfh
>     >>>> Q&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_
>     >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=RS-lsygPtDdgWKAhjA2BcSLk
>     >>>> Vy9RxxshXWAJaBZa_Yc&e=
>     >>>>
>     >>>> and
>     >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu
>     >>>> ctor.org_checkResults_devel_bioc-2DLATEST_derfinder_toluca
>     >>>> 2-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3X
>     >>>> eAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_
>     >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=a_K-yK7w2LEV72lpHrpp0UoK
>     >>>> Rru_7Aad74T5Uk0R-Fo&e=
>     >>>> .
>     >>>> The end of "test-all.Rout.fail" looks like this:
>     >>>>
>     >>>> Loading required package: foreach
>     >>>> Loading required package: iterators
>     >>>> Loading required package: locfit
>     >>>> locfit 1.5-9.1 2013-03-22
>     >>>> getSegments: segmenting
>     >>>> getSegments: splitting
>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>     >>>> 2017-03-20 02:36:52 findRegions: identifying potential segments
>     >>>> 2017-03-20 02:36:52 findRegions: segmenting information
>     >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with cutoff(s)
>     >>>> 16.3681899295041
>     >>>> 2017-03-20 02:36:52 findRegions: identifying candidate regions
>     >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>     >>>> 2017-03-20 02:36:52 findRegions: identifying potential segments
>     >>>> 2017-03-20 02:36:52 findRegions: segmenting information
>     >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with cutoff(s)
>     >>>> 19.7936614060235
>     >>>> 2017-03-20 02:36:52 findRegions: identifying candidate regions
>     >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>     >>>>
>     >>>> *** caught segfault ***
>     >>>> address 0x7f87d2f917e0, cause 'memory not mapped'
>     >>>>
>     >>>> Traceback:
>     >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) {
>     >>>> hostPackage <- environmentName(environment(smoothFun))
>     >>>> requireNamespace(hostPackage)    smoothed <- .runFunFormal(smoothFun,
>     >>>> y = y, x = x, cluster = cluster,         weights = weights, ...)    if
>     >>>> (any(!smoothed$smoothed)) {        smoothed$fitted[!smoothed$smoothed]
>     >>>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>     >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], dots[[3L]][[1L]],
>     >>>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL, cluster,
>     >>>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan = 0,
>     >>>> verbose = TRUE)     {        if (is.null(dim(y)))             y <-
>     >>>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>     >>>> is.null(dim(weights)))             weights <- matrix(weights, ncol =
>     >>>> 1)        if (is.null(x))             x <- seq(along = y)        if
>     >>>> (is.null(weights))             weights <- matrix(1, nrow = nrow(y),
>     >>>> ncol = ncol(y))        Indexes <- split(seq(along = cluster), cluster)
>     >>>> clusterL <- sapply(Indexes, length)        smoothed <-
>     >>>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>     >>>> if (verbose)                 if (i%%10000 == 0)
>     >>>> cat(".")            Index <- Indexes[[i]]            if (clusterL[i]
>     >>>>
>     >>>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop =
>     >>>>>
>     >>>> FALSE])) == 0) >= minNum) {                nn <-
>     >>>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>     >>>> sdata <- data.frame(pos = x[Index], y = y[Index,
>     >>>> j], weights = weights[Index, j])                  fit <-
>     >>>> locfit(y ˜ lp(pos, nn = nn, h = bpSpan),                     data =
>     >>>> sdata, weights = weights, family = "gaussian",
>     >>>> maxk = 10000)                  pp <- preplot(fit, where = "data", band
>     >>>> = "local",                     newdata = data.frame(pos = x[Index]))
>     >>>> y[Index, j] <- pp$trans(pp$fit)                }
>     >>>> }            else {                y[Index, ] <- NA
>     >>>> smoothed[Index] <- FALSE            }        }
>     >>>> return(list(fitted = y, smoothed = smoothed, smoother = "locfit"))
>     >>>> }, verbose = TRUE, minNum = 1435)
>     >>>> 2: .mapply(.FUN, dots, .MoreArgs)
>     >>>> 3: FUN(...)
>     >>>> 4: doTryCatch(return(expr), name, parentenv, handler)
>     >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>     >>>> 6: tryCatchList(expr, classes, parentenv, handlers)
>     >>>> 7: tryCatch({    FUN(...)}, error = handle_error)
>     >>>> 8: withCallingHandlers({    tryCatch({        FUN(...)    }, error =
>     >>>> handle_error)}, warning = handle_warning)
>     >>>> 9: FUN(X[[i]], ...)
>     >>>> 10: lapply(X, FUN, ...)
>     >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>     >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>     >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>     >>>> ...), BPPARAM = BPPARAM)
>     >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>     >>>> ...), BPPARAM = BPPARAM)
>     >>>> 15: .smootherFstats(fstats = fstats, position = position, weights =
>     >>>> weights,     smoothFunction = smoothFunction, ...)
>     >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose = TRUE,
>     >>>> smooth = TRUE, minNum = 1435)
>     >>>> 17: eval(exprs, env)
>     >>>> 18: eval(exprs, env)
>     >>>> 19: source_file(path, new.env(parent = env), chdir = TRUE)
>     >>>> 20: force(code)
>     >>>> 21: with_reporter(reporter = reporter, start_end_reporter =
>     >>>> start_end_reporter,     {        lister$start_file(basename(path))
>     >>>> source_file(path, new.env(parent = env), chdir = TRUE)
>     >>>> end_context()    })
>     >>>> 22: FUN(X[[i]], ...)
>     >>>> 23: lapply(paths, test_file, env = env, reporter = current_reporter,
>     >>>> start_end_reporter = FALSE, load_helpers = FALSE)
>     >>>> 24: force(code)
>     >>>> 25: with_reporter(reporter = current_reporter, results <-
>     >>>> lapply(paths,     test_file, env = env, reporter = current_reporter,
>     >>>> start_end_reporter = FALSE,     load_helpers = FALSE))
>     >>>> 26: test_files(paths, reporter = reporter, env = env, ...)
>     >>>> 27: test_dir(test_path, reporter = reporter, env = env, filter =
>     >>>> filter,     ...)
>     >>>> 28: with_top_env(env, {    test_dir(test_path, reporter = reporter,
>     >>>> env = env, filter = filter,         ...)})
>     >>>> 29: run_tests(package, test_path, filter, reporter, ...)
>     >>>> 30: test_check("derfinder")
>     >>>> An irrecoverable exception occurred. R is aborting now ...
>     >>>>
>     >>>> I was finally able to reproduce this error on my Mac OSX laptop after
>     >>>> running R CMD build and R CMD check (same options as in Bioc) several
>     >>>> times. It took me a while, but I figured out what's the exact code
>     >>>> that's failing. It can be reproduced (noting that it won't always
>     >>>> fail...) in OSX by running:
>     >>>>
>     >>>> library('derfinder')
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>     >>>>
>     >>>>
>     >>>> Here is the output from my laptop one time it actually failed:
>     >>>>
>     >>>> library('derfinder')
>     >>>>>
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>>
>     >>>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>>> chunksize=1e3,
>     >>>>>
>     >>>> +     colsubset=NULL)
>     >>>>
>     >>>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>     >>>>>
>     >>>> 2017-03-21 16:37:39 findRegions: smoothing
>     >>>>
>     >>>> *** caught segfault ***
>     >>>> address 0x7f958dbf2be0, cause 'memory not mapped'
>     >>>>
>     >>>> Traceback:
>     >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) {
>     >>>> hostPackage <- environmentName(environment(smoothFun))
>     >>>> requireNamespace(hostPackage)    smoothed <- .runFunFormal(smoothFun,
>     >>>> y = y, x = x, cluster = cluster,         weights = weights, ...)    if
>     >>>> (any(!smoothed$smoothed)) {        smoothed$fitted[!smoothed$smoothed]
>     >>>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>     >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], dots[[3L]][[1L]],
>     >>>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL, cluster,
>     >>>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan = 0,
>     >>>> verbose = TRUE)     {        if (is.null(dim(y)))             y <-
>     >>>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>     >>>> is.null(dim(weights)))             weights <- matrix(weights, ncol =
>     >>>> 1)        if (is.null(x))             x <- seq(along = y)        if
>     >>>> (is.null(weights))             weights <- matrix(1, nrow = nrow(y),
>     >>>> ncol = ncol(y))        Indexes <- split(seq(along = cluster), cluster)
>     >>>> clusterL <- sapply(Indexes, length)        smoothed <-
>     >>>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>     >>>> if (verbose)                 if (i%%10000 == 0)
>     >>>> cat(".")            Index <- Indexes[[i]]            if (clusterL[i]
>     >>>>
>     >>>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop =
>     >>>>>
>     >>>> FALSE])) == 0) >= minNum) {                nn <-
>     >>>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>     >>>> sdata <- data.frame(pos = x[Index], y = y[Index,
>     >>>> j], weights = weights[Index, j])                  fit <-
>     >>>> locfit(y ~ lp(pos, nn = nn, h = bpSpan),                     data =
>     >>>> sdata, weights = weights, family = "gaussian",
>     >>>> maxk = 10000)                  pp <- preplot(fit, where = "data", band
>     >>>> = "local",                     newdata = data.frame(pos = x[Index]))
>     >>>> y[Index, j] <- pp$trans(pp$fit)                }
>     >>>> }            else {                y[Index, ] <- NA
>     >>>> smoothed[Index] <- FALSE            }        }
>     >>>> return(list(fitted = y, smoothed = smoothed, smoother = "locfit"))
>     >>>> }, verbose = TRUE, minNum = 1435)
>     >>>> 2: .mapply(.FUN, dots, .MoreArgs)
>     >>>> 3: FUN(...)
>     >>>> 4: doTryCatch(return(expr), name, parentenv, handler)
>     >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>     >>>> 6: tryCatchList(expr, classes, parentenv, handlers)
>     >>>> 7: tryCatch({    FUN(...)}, error = handle_error)
>     >>>> 8: withCallingHandlers({    tryCatch({        FUN(...)    }, error =
>     >>>> handle_error)}, warning = handle_warning)
>     >>>> 9: FUN(X[[i]], ...)
>     >>>> 10: lapply(X, FUN, ...)
>     >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>     >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>     >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>     >>>> ...), BPPARAM = BPPARAM)
>     >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>     >>>> ...), BPPARAM = BPPARAM)
>     >>>> 15: .smootherFstats(fstats = fstats, position = position, weights =
>     >>>> weights,     smoothFunction = smoothFunction, ...)
>     >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose = TRUE,
>     >>>> smooth = TRUE, minNum = 1435)
>     >>>>
>     >>>> Possible actions:
>     >>>> 1: abort (with core dump, if enabled)
>     >>>> 2: normal R exit
>     >>>> 3: exit R without saving workspace
>     >>>> 4: exit R saving workspace
>     >>>>
>     >>>> The traceback information ends at's bumphunter::loessByCluster().
>     >>>>
>     >>>>
>     >>>> I have successfully used the following code other times (see below)
>     >>>> where I test the culprit line 100 times. By successfully, I mean that
>     >>>> the code ran without problems... so it was unsuccessful at reproducing
>     >>>> the problem.
>     >>>>
>     >>>> library('derfinder')
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>>
>     >>>> for(i in 1:100) {
>     >>>> print(i)
>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>     >>>> }
>     >>>> options(width = 120)
>     >>>> devtools::session_info()
>     >>>>
>     >>>>
>     >>>> I had several R processes open the one time it did fail, but well,
>     >>>> I've had multiple of them open the times that the code didn't fail. So
>     >>>> having multiple R processes doesn't seem to be an issue.
>     >>>>
>     >>>> The line that triggers the segfault is used simply to test that
>     >>>> passing the argument 'minNum' to bumphunter::loessByCluster() via
>     >>>> '...' works. It's not a relevant test for derfinder and I was tempted
>     >>>> to remove it, although before tracing the bug I talked with Valerie
>     >>>> about not removing it. With the upcoming Bioconductor release I
>     >>>> decided to finally trace the line that triggers the segfault. At this
>     >>>> point I was feeling lost...
>     >>>>
>     >>>>
>     >>>> Running the following code seems to trigger the segfault more often (I
>     >>>> got it like 4 times in a row):
>     >>>>
>     >>>> library('derfinder')
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE)
>     >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, smoothFunction =
>     >>>> bumphunter::runmedByCluster)
>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>     >>>>
>     >>>> But then I can still run the same code without problems on a for loop
>     >>>> for 100 times:
>     >>>>
>     >>>> library('derfinder')
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>>
>     >>>> for(i in 1:100) {
>     >>>> print(i)
>     >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE)
>     >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, smoothFunction =
>     >>>> bumphunter::runmedByCluster)
>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>     >>>> }
>     >>>> options(width = 120)
>     >>>> devtools::session_info()
>     >>>>
>     >>>>
>     >>>>
>     >>>>
>     >>>> I next thought of going through findRegions() to produce simple
>     >>>> objects that could reproduce the error. I had in mine sharing these
>     >>>> objects so it would be easier for others to help me figure out what
>     >>>> was failing. It turns out that this code segfaulted reliably (all the
>     >>>> times I tested it at least):
>     >>>>
>     >>>>
>     >>>> library('derfinder')
>     >>>> library('BiocParallel')
>     >>>> library('IRanges')
>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>     >>>> chunksize=1e3,
>     >>>> colsubset=NULL)
>     >>>> fstats <- genomeFstats
>     >>>> position <- prep$position
>     >>>> weights <- NULL
>     >>>> cluster <- derfinder:::.clusterMakerRle(position, 300L)
>     >>>> cluster
>     >>>> BPPARAM <- SerialParam()
>     >>>> iChunks <- rep(1, length(cluster))
>     >>>>
>     >>>> fstatsChunks <- split(fstats, iChunks)
>     >>>> posChunks <- split(which(position), iChunks)
>     >>>> clusterChunks <- split(cluster, iChunks)
>     >>>> weightChunks <- vector('list', length = length(unique(iChunks)))
>     >>>>
>     >>>> res <- bpmapply(bumphunter::loessByCluster, fstatsChunks, posChunks,
>     >>>> clusterChunks, weightChunks, MoreArgs = list(minNum = 1435),
>     >>>> BPPARAM = BPPARAM, SIMPLIFY = FALSE)
>     >>>>
>     >>>> y <- fstatsChunks[[1]]
>     >>>> smoothed <- res[[1]]
>     >>>>
>     >>>> ## This segfaults:
>     >>>> if(any(!smoothed$smoothed)) {
>     >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>     >>>> }
>     >>>>
>     >>>>
>     >>>> The objects on the line that fail are a list and an Rle:
>     >>>>
>     >>>> y
>     >>>>>
>     >>>> numeric-Rle of length 1434 with 358 runs
>     >>>> Lengths:                    1                    5
>     >>>> ...                    1
>     >>>> Values :       5.109484425367     3.85228949953674 ...
>     >>>> 3.99765511645983
>     >>>>
>     >>>>> lapply(smoothed, head)
>     >>>>>
>     >>>> $fitted
>     >>>> [,1]
>     >>>> [1,]   NA
>     >>>> [2,]   NA
>     >>>> [3,]   NA
>     >>>> [4,]   NA
>     >>>> [5,]   NA
>     >>>> [6,]   NA
>     >>>>
>     >>>> $smoothed
>     >>>> [1] FALSE FALSE FALSE FALSE FALSE FALSE
>     >>>>
>     >>>> $smoother
>     >>>> [1] "loess"
>     >>>>
>     >>>>> table(!smoothed$smoothed)
>     >>>>>
>     >>>>
>     >>>> TRUE
>     >>>> 1434
>     >>>>
>     >>>>> y[!smoothed$smoothed]
>     >>>>>
>     >>>> numeric-Rle of length 1434 with 358 runs
>     >>>> Lengths:                    1                    5
>     >>>> ...                    1
>     >>>> Values :       5.109484425367     3.85228949953674 ...
>     >>>> 3.99765511645983
>     >>>>
>     >>>> So in my derfinder code I was assigning an Rle to a matrix, and that
>     >>>> was the segfault. I have no idea why this doesn't always fail on OSX
>     >>>> and why it never failed on Linux or Windows.
>     >>>>
>     >>>>
>     >>>> This is the super simplified IRanges code that fails:
>     >>>>
>     >>>> library('IRanges')
>     >>>> y <- Rle(runif(10, 1, 1))
>     >>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>     >>>> 'smoothed' = rep(FALSE, 10), smoother = 'loess')
>     >>>> sessionInfo()
>     >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>     >>>>
>     >>>> ## Segfault on OSX
>     >>>>
>     >>>> library('IRanges')
>     >>>>> y <- Rle(runif(10, 1, 1))
>     >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>     >>>>>
>     >>>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>     >>>>
>     >>>>>
>     >>>>> sessionInfo()
>     >>>>>
>     >>>> R Under development (unstable) (2016-10-26 r71594)
>     >>>> Platform: x86_64-apple-darwin13.4.0 (64-bit)
>     >>>> Running under: macOS Sierra 10.12.3
>     >>>>
>     >>>> locale:
>     >>>> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>     >>>>
>     >>>> attached base packages:
>     >>>> [1] stats4    parallel  stats     graphics  grDevices utils
>     >>>> datasets  methods   base
>     >>>>
>     >>>> other attached packages:
>     >>>> [1] IRanges_2.9.19      S4Vectors_0.13.15   BiocGenerics_0.21.3
>     >>>>
>     >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>     >>>>>
>     >>>>
>     >>>> *** caught segfault ***
>     >>>> address 0x7fcdc31dffe0, cause 'memory not mapped'
>     >>>>
>     >>>> Possible actions:
>     >>>> 1: abort (with core dump, if enabled)
>     >>>> 2: normal R exit
>     >>>> 3: exit R without saving workspace
>     >>>> 4: exit R saving workspace
>     >>>>
>     >>>>
>     >>>> ## No problems on Linux
>     >>>>
>     >>>> library('IRanges')
>     >>>>> y <- Rle(runif(10, 1, 1))
>     >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>     >>>>>
>     >>>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>     >>>>
>     >>>>>
>     >>>>> sessionInfo()
>     >>>>>
>     >>>> R version 3.3.1 Patched (2016-09-30 r71426)
>     >>>> Platform: x86_64-pc-linux-gnu (64-bit)
>     >>>> Running under: Red Hat Enterprise Linux Server release 6.6 (Santiago)
>     >>>>
>     >>>> locale:
>     >>>> [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
>     >>>> [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
>     >>>> [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
>     >>>> [7] LC_PAPER=en_US.UTF-8       LC_NAME=C
>     >>>> [9] LC_ADDRESS=C               LC_TELEPHONE=C
>     >>>> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
>     >>>>
>     >>>> attached base packages:
>     >>>> [1] stats4    parallel  stats     graphics  grDevices datasets  utils
>     >>>> [8] methods   base
>     >>>>
>     >>>> other attached packages:
>     >>>> [1] IRanges_2.8.2       S4Vectors_0.12.2    BiocGenerics_0.20.0
>     >>>> [4] colorout_1.1-2
>     >>>>
>     >>>> loaded via a namespace (and not attached):
>     >>>> [1] tools_3.3.1
>     >>>>
>     >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>     >>>>>
>     >>>>
>     >>>>
>     >>>> Best,
>     >>>> Leo
>     >>>>
>     >>>>
>     >>>>
>     >>>> The session information for my first tests is below:
>     >>>>
>     >>>> devtools::session_info()
>     >>>>>
>     >>>> Session info
>     >>>> ------------------------------------------------------------
>     >>>> -----------------------------------------------
>     >>>>
>     >>>> setting  value
>     >>>> version  R Under development (unstable) (2016-10-26 r71594)
>     >>>> system   x86_64, darwin13.4.0
>     >>>> ui       X11
>     >>>> language (EN)
>     >>>> collate  en_US.UTF-8
>     >>>> tz       America/New_York
>     >>>> date     2017-03-21
>     >>>>
>     >>>> Packages
>     >>>> ------------------------------------------------------------
>     >>>> ---------------------------------------------------
>     >>>>
>     >>>> package              * version  date       source
>     >>>> acepack                1.4.1    2016-10-29 CRAN (R 3.4.0)
>     >>>> AnnotationDbi          1.37.4   2017-03-10 Bioconductor
>     >>>> assertthat             0.1      2013-12-06 CRAN (R 3.4.0)
>     >>>> backports              1.0.5    2017-01-18 CRAN (R 3.4.0)
>     >>>> base64enc              0.1-3    2015-07-28 CRAN (R 3.4.0)
>     >>>> Biobase                2.35.1   2017-02-23 Bioconductor
>     >>>> BiocGenerics         * 0.21.3 2017-01-12 Bioconductor
>     >>>> BiocParallel           1.9.5    2017-01-24 Bioconductor
>     >>>> biomaRt                2.31.4   2017-01-13 Bioconductor
>     >>>> Biostrings             2.43.5   2017-03-19 cran (@2.43.5)
>     >>>> bitops                 1.0-6 2013-08-17 CRAN (R 3.4.0)
>     >>>> BSgenome               1.43.7   2017-02-24 Bioconductor
>     >>>> bumphunter           * 1.15.0 2016-10-23 Bioconductor
>     >>>> checkmate              1.8.2    2016-11-02 CRAN (R 3.4.0)
>     >>>> cluster                2.0.6    2017-03-16 CRAN (R 3.4.0)
>     >>>> codetools              0.2-15 2016-10-05 CRAN (R 3.4.0)
>     >>>> colorout             * 1.1-2    2016-11-15 Github
>     >>>> (jalvesaq/colorout at 6d84420)
>     >>>> colorspace             1.3-2    2016-12-14 CRAN (R 3.4.0)
>     >>>> crayon                 1.3.2    2016-06-28 CRAN (R 3.4.0)
>     >>>> data.table             1.10.4   2017-02-01 CRAN (R 3.4.0)
>     >>>> DBI                    0.6      2017-03-09 CRAN (R 3.4.0)
>     >>>> DelayedArray           0.1.7 2017-02-17 Bioconductor
>     >>>> derfinder            * 1.9.10   2017-03-17 cran (@1.9.10)
>     >>>> derfinderHelper        1.9.4    2017-03-07 Bioconductor
>     >>>> devtools               1.12.0 2016-12-05 CRAN (R 3.4.0)
>     >>>> digest                 0.6.12 2017-01-27 CRAN (R 3.4.0)
>     >>>> doRNG                  1.6      2014-03-07 CRAN (R 3.4.0)
>     >>>> foreach              * 1.4.3    2015-10-13 CRAN (R 3.4.0)
>     >>>> foreign                0.8-67 2016-09-13 CRAN (R 3.4.0)
>     >>>> Formula                1.2-1    2015-04-07 CRAN (R 3.4.0)
>     >>>> GenomeInfoDb         * 1.11.9   2017-02-08 Bioconductor
>     >>>> GenomeInfoDbData       0.99.0 2017-02-14 Bioconductor
>     >>>> GenomicAlignments      1.11.12  2017-03-16 cran (@1.11.12)
>     >>>> GenomicFeatures        1.27.10  2017-03-16 cran (@1.27.10)
>     >>>> GenomicFiles           1.11.4   2017-03-10 Bioconductor
>     >>>> GenomicRanges        * 1.27.23  2017-02-25 Bioconductor
>     >>>> ggplot2                2.2.1    2016-12-30 CRAN (R 3.4.0)
>     >>>> gridExtra              2.2.1    2016-02-29 CRAN (R 3.4.0)
>     >>>> gtable                 0.2.0 2016-02-26 CRAN (R 3.4.0)
>     >>>> Hmisc                  4.0-2 2016-12-31 CRAN (R 3.4.0)
>     >>>> htmlTable              1.9      2017-01-26 CRAN (R 3.4.0)
>     >>>> htmltools              0.3.5 2016-03-21 CRAN (R 3.4.0)
>     >>>> htmlwidgets            0.8      2016-11-09 CRAN (R 3.4.0)
>     >>>> IRanges              * 2.9.19   2017-03-15 cran (@2.9.19)
>     >>>> iterators            * 1.0.8    2015-10-13 CRAN (R 3.4.0)
>     >>>> knitr                  1.15.1   2016-11-22 CRAN (R 3.4.0)
>     >>>> lattice                0.20-34 2016-09-06 CRAN (R 3.4.0)
>     >>>> latticeExtra           0.6-28 2016-02-09 CRAN (R 3.4.0)
>     >>>> lazyeval               0.2.0 2016-06-12 CRAN (R 3.4.0)
>     >>>> locfit               * 1.5-9.1  2013-04-20 CRAN (R 3.4.0)
>     >>>> magrittr               1.5      2014-11-22 CRAN (R 3.4.0)
>     >>>> Matrix                 1.2-8    2017-01-20 CRAN (R 3.4.0)
>     >>>> matrixStats            0.51.0 2016-10-09 CRAN (R 3.4.0)
>     >>>> memoise                1.0.0 2016-01-29 CRAN (R 3.4.0)
>     >>>> munsell                0.4.3 2016-02-13 CRAN (R 3.4.0)
>     >>>> nnet                   7.3-12   2016-02-02 CRAN (R 3.4.0)
>     >>>> pkgmaker               0.22     2014-05-14 CRAN (R 3.4.0)
>     >>>> plyr                   1.8.4    2016-06-08 CRAN (R 3.4.0)
>     >>>> qvalue                 2.7.0 2016-10-23 Bioconductor
>     >>>> R6                     2.2.0 2016-10-05 CRAN (R 3.4.0)
>     >>>> RColorBrewer           1.1-2    2014-12-07 CRAN (R 3.4.0)
>     >>>> Rcpp                   0.12.10  2017-03-19 CRAN (R 3.4.0)
>     >>>> RCurl                  1.95-4.8 2016-03-01 CRAN (R 3.4.0)
>     >>>> registry               0.3      2015-07-08 CRAN (R 3.4.0)
>     >>>> reshape2               1.4.2    2016-10-22 CRAN (R 3.4.0)
>     >>>> rngtools               1.2.4    2014-03-06 CRAN (R 3.4.0)
>     >>>> rpart                  4.1-10   2015-06-29 CRAN (R 3.4.0)
>     >>>> Rsamtools              1.27.13  2017-03-14 cran (@1.27.13)
>     >>>> RSQLite                1.1-2    2017-01-08 CRAN (R 3.4.0)
>     >>>> rtracklayer            1.35.9   2017-03-19 cran (@1.35.9)
>     >>>> S4Vectors            * 0.13.15  2017-02-14 cran (@0.13.15)
>     >>>> scales                 0.4.1 2016-11-09 CRAN (R 3.4.0)
>     >>>> stringi                1.1.2    2016-10-01 CRAN (R 3.4.0)
>     >>>> stringr                1.2.0 2017-02-18 CRAN (R 3.4.0)
>     >>>> SummarizedExperiment   1.5.7    2017-02-23 Bioconductor
>     >>>> survival               2.41-2   2017-03-16 CRAN (R 3.4.0)
>     >>>> testthat             * 1.0.2    2016-04-23 CRAN (R 3.4.0)
>     >>>> tibble                 1.2      2016-08-26 CRAN (R 3.4.0)
>     >>>> VariantAnnotation      1.21.17  2017-02-12 Bioconductor
>     >>>> withr                  1.0.2    2016-06-20 CRAN (R 3.4.0)
>     >>>> XML                    3.98-1.5 2016-11-10 CRAN (R 3.4.0)
>     >>>> xtable                 1.8-2    2016-02-05 CRAN (R 3.4.0)
>     >>>> XVector                0.15.2 2017-02-02 Bioconductor
>     >>>> zlibbioc               1.21.0 2016-10-23 Bioconductor
>     >>>>
>     >>>> _______________________________________________
>     >>>> Bioc-devel at r-project.org mailing list
>     >>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.et
>     >>>> hz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt
>     >>>> 84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=
>     >>>> Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=hEBTd8bPfLVp6H
>     >>>> oN3XSBk6ppmeRZhdLoB8VseYM_Byk&e=
>     >>>>
>     >>>>
>     >>>>
>     >>>
>     >>
>     >> This email message may contain legally privileged and/or...{{dropped:2}}
>     >>
>     >>
>     >> _______________________________________________
>     >> Bioc-devel at r-project.org mailing list
>     >> https://stat.ethz.ch/mailman/listinfo/bioc-devel
>     >>
>
>     > [[alternative HTML version deleted]]
>
>     > _______________________________________________
>     > Bioc-devel at r-project.org mailing list
>     > https://stat.ethz.ch/mailman/listinfo/bioc-devel
>


This email message may contain legally privileged and/or...{{dropped:2}}



More information about the Bioc-devel mailing list