[Bioc-devel] The story of tracing a derfinder bug on OSX that sometimes popped up, sometimes it didn't. Related to IRanges/S4Vectors '$<-'

Martin Morgan martin.morgan at roswellpark.org
Wed Mar 22 01:28:41 CET 2017


On 03/21/2017 08:21 PM, Hervé Pagès wrote:
> Hi Leonardo,
>
> Thanks for hunting down and isolating that bug! I tried to simplify
> your code even more and was able to get a segfault with just:
>
>   setClass("A", representation(stuff="numeric"))
>   x <- logical(10)
>   x[TRUE] <- new("A")
>
> I get the segfault about 50% of the time on a fresh R session on Mac.
> I tried this with R 3.3.3 on Mavericks, and with R devel (r72372)
> on El Capitan. I get the segfault on both.
>
> So it looks like a bug in the `[<-` primitive to me (subassignment).

Any insight from

   R -d valgrind -f herve.R

where herve.R contains the code above?

Martin

>
> Cheers,
> H.
>
> On 03/21/2017 03:06 PM, Leonardo Collado Torres wrote:
>> Hi bioc-devel,
>>
>> This is a story about a bug that took me a long time to trace. The
>> behaviour was really weird, so I'm sharing the story in case this
>> helps others in the future. I was originally writing it to request
>> help, but then I was able to find the issue ^^. The story ends right
>> now with code that will reproduce the problem with '$<-' from
>> IRanges/S4Vectors.
>>
>>
>>
>>
>> During this Bioc cycle, frequently my package derfinder has failed to
>> pass R CMD check in OSX. The error is always the same when it appears
>> and sometimes it shows up in release, but not devel and viceversa.
>> Right now (3/21/2017) it's visible in both
>> https://urldefense.proofpoint.com/v2/url?u=http-3A__bioconductor.org_checkResults_release_bioc-2DLATEST_derfinder_morelia-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=RS-lsygPtDdgWKAhjA2BcSLkVy9RxxshXWAJaBZa_Yc&e=
>>
>> and
>> https://urldefense.proofpoint.com/v2/url?u=http-3A__bioconductor.org_checkResults_devel_bioc-2DLATEST_derfinder_toluca2-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=a_K-yK7w2LEV72lpHrpp0UoKRru_7Aad74T5Uk0R-Fo&e=
>> .
>> The end of "test-all.Rout.fail" looks like this:
>>
>> Loading required package: foreach
>> Loading required package: iterators
>> Loading required package: locfit
>> locfit 1.5-9.1 2013-03-22
>> getSegments: segmenting
>> getSegments: splitting
>> 2017-03-20 02:36:52 findRegions: smoothing
>> 2017-03-20 02:36:52 findRegions: identifying potential segments
>> 2017-03-20 02:36:52 findRegions: segmenting information
>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with cutoff(s)
>> 16.3681899295041
>> 2017-03-20 02:36:52 findRegions: identifying candidate regions
>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>> 2017-03-20 02:36:52 findRegions: smoothing
>> 2017-03-20 02:36:52 findRegions: identifying potential segments
>> 2017-03-20 02:36:52 findRegions: segmenting information
>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with cutoff(s)
>> 19.7936614060235
>> 2017-03-20 02:36:52 findRegions: identifying candidate regions
>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>> 2017-03-20 02:36:52 findRegions: smoothing
>>
>>  *** caught segfault ***
>> address 0x7f87d2f917e0, cause 'memory not mapped'
>>
>> Traceback:
>>  1: (function (y, x, cluster, weights, smoothFun, ...) {
>> hostPackage <- environmentName(environment(smoothFun))
>> requireNamespace(hostPackage)    smoothed <- .runFunFormal(smoothFun,
>> y = y, x = x, cluster = cluster,         weights = weights, ...)    if
>> (any(!smoothed$smoothed)) {        smoothed$fitted[!smoothed$smoothed]
>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], dots[[3L]][[1L]],
>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL, cluster,
>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan = 0,
>> verbose = TRUE)     {        if (is.null(dim(y)))             y <-
>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>> is.null(dim(weights)))             weights <- matrix(weights, ncol =
>> 1)        if (is.null(x))             x <- seq(along = y)        if
>> (is.null(weights))             weights <- matrix(1, nrow = nrow(y),
>> ncol = ncol(y))        Indexes <- split(seq(along = cluster), cluster)
>>        clusterL <- sapply(Indexes, length)        smoothed <-
>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>> if (verbose)                 if (i%%10000 == 0)
>> cat(".")            Index <- Indexes[[i]]            if (clusterL[i]
>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop =
>> FALSE])) == 0) >= minNum) {                nn <-
>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>>         sdata <- data.frame(pos = x[Index], y = y[Index,
>>       j], weights = weights[Index, j])                  fit <-
>> locfit(y ˜ lp(pos, nn = nn, h = bpSpan),                     data =
>> sdata, weights = weights, family = "gaussian",
>> maxk = 10000)                  pp <- preplot(fit, where = "data", band
>> = "local",                     newdata = data.frame(pos = x[Index]))
>>                y[Index, j] <- pp$trans(pp$fit)                }
>>     }            else {                y[Index, ] <- NA
>> smoothed[Index] <- FALSE            }        }
>> return(list(fitted = y, smoothed = smoothed, smoother = "locfit"))
>> }, verbose = TRUE, minNum = 1435)
>>  2: .mapply(.FUN, dots, .MoreArgs)
>>  3: FUN(...)
>>  4: doTryCatch(return(expr), name, parentenv, handler)
>>  5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>>  6: tryCatchList(expr, classes, parentenv, handlers)
>>  7: tryCatch({    FUN(...)}, error = handle_error)
>>  8: withCallingHandlers({    tryCatch({        FUN(...)    }, error =
>> handle_error)}, warning = handle_warning)
>>  9: FUN(X[[i]], ...)
>> 10: lapply(X, FUN, ...)
>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>>   .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>>   .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>>     weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>> ...), BPPARAM = BPPARAM)
>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>>     weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>> ...), BPPARAM = BPPARAM)
>> 15: .smootherFstats(fstats = fstats, position = position, weights =
>> weights,     smoothFunction = smoothFunction, ...)
>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose = TRUE,
>>    smooth = TRUE, minNum = 1435)
>> 17: eval(exprs, env)
>> 18: eval(exprs, env)
>> 19: source_file(path, new.env(parent = env), chdir = TRUE)
>> 20: force(code)
>> 21: with_reporter(reporter = reporter, start_end_reporter =
>> start_end_reporter,     {        lister$start_file(basename(path))
>>    source_file(path, new.env(parent = env), chdir = TRUE)
>> end_context()    })
>> 22: FUN(X[[i]], ...)
>> 23: lapply(paths, test_file, env = env, reporter = current_reporter,
>>   start_end_reporter = FALSE, load_helpers = FALSE)
>> 24: force(code)
>> 25: with_reporter(reporter = current_reporter, results <-
>> lapply(paths,     test_file, env = env, reporter = current_reporter,
>> start_end_reporter = FALSE,     load_helpers = FALSE))
>> 26: test_files(paths, reporter = reporter, env = env, ...)
>> 27: test_dir(test_path, reporter = reporter, env = env, filter =
>> filter,     ...)
>> 28: with_top_env(env, {    test_dir(test_path, reporter = reporter,
>> env = env, filter = filter,         ...)})
>> 29: run_tests(package, test_path, filter, reporter, ...)
>> 30: test_check("derfinder")
>> An irrecoverable exception occurred. R is aborting now ...
>>
>> I was finally able to reproduce this error on my Mac OSX laptop after
>> running R CMD build and R CMD check (same options as in Bioc) several
>> times. It took me a while, but I figured out what's the exact code
>> that's failing. It can be reproduced (noting that it won't always
>> fail...) in OSX by running:
>>
>> library('derfinder')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>
>>
>> Here is the output from my laptop one time it actually failed:
>>
>>> library('derfinder')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>> chunksize=1e3,
>> +     colsubset=NULL)
>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>> 2017-03-21 16:37:39 findRegions: smoothing
>>
>>  *** caught segfault ***
>> address 0x7f958dbf2be0, cause 'memory not mapped'
>>
>> Traceback:
>>  1: (function (y, x, cluster, weights, smoothFun, ...) {
>> hostPackage <- environmentName(environment(smoothFun))
>> requireNamespace(hostPackage)    smoothed <- .runFunFormal(smoothFun,
>> y = y, x = x, cluster = cluster,         weights = weights, ...)    if
>> (any(!smoothed$smoothed)) {        smoothed$fitted[!smoothed$smoothed]
>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], dots[[3L]][[1L]],
>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL, cluster,
>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan = 0,
>> verbose = TRUE)     {        if (is.null(dim(y)))             y <-
>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>> is.null(dim(weights)))             weights <- matrix(weights, ncol =
>> 1)        if (is.null(x))             x <- seq(along = y)        if
>> (is.null(weights))             weights <- matrix(1, nrow = nrow(y),
>> ncol = ncol(y))        Indexes <- split(seq(along = cluster), cluster)
>>        clusterL <- sapply(Indexes, length)        smoothed <-
>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>> if (verbose)                 if (i%%10000 == 0)
>> cat(".")            Index <- Indexes[[i]]            if (clusterL[i]
>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop =
>> FALSE])) == 0) >= minNum) {                nn <-
>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>>         sdata <- data.frame(pos = x[Index], y = y[Index,
>>       j], weights = weights[Index, j])                  fit <-
>> locfit(y ~ lp(pos, nn = nn, h = bpSpan),                     data =
>> sdata, weights = weights, family = "gaussian",
>> maxk = 10000)                  pp <- preplot(fit, where = "data", band
>> = "local",                     newdata = data.frame(pos = x[Index]))
>>                y[Index, j] <- pp$trans(pp$fit)                }
>>     }            else {                y[Index, ] <- NA
>> smoothed[Index] <- FALSE            }        }
>> return(list(fitted = y, smoothed = smoothed, smoother = "locfit"))
>> }, verbose = TRUE, minNum = 1435)
>>  2: .mapply(.FUN, dots, .MoreArgs)
>>  3: FUN(...)
>>  4: doTryCatch(return(expr), name, parentenv, handler)
>>  5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>>  6: tryCatchList(expr, classes, parentenv, handlers)
>>  7: tryCatch({    FUN(...)}, error = handle_error)
>>  8: withCallingHandlers({    tryCatch({        FUN(...)    }, error =
>> handle_error)}, warning = handle_warning)
>>  9: FUN(X[[i]], ...)
>> 10: lapply(X, FUN, ...)
>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>>   .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd = ddd,
>>   .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>>     weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>> ...), BPPARAM = BPPARAM)
>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, clusterChunks,
>>     weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>> ...), BPPARAM = BPPARAM)
>> 15: .smootherFstats(fstats = fstats, position = position, weights =
>> weights,     smoothFunction = smoothFunction, ...)
>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose = TRUE,
>>    smooth = TRUE, minNum = 1435)
>>
>> Possible actions:
>> 1: abort (with core dump, if enabled)
>> 2: normal R exit
>> 3: exit R without saving workspace
>> 4: exit R saving workspace
>>
>> The traceback information ends at's bumphunter::loessByCluster().
>>
>>
>> I have successfully used the following code other times (see below)
>> where I test the culprit line 100 times. By successfully, I mean that
>> the code ran without problems... so it was unsuccessful at reproducing
>> the problem.
>>
>> library('derfinder')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>>
>> for(i in 1:100) {
>>     print(i)
>>     regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>> }
>> options(width = 120)
>> devtools::session_info()
>>
>>
>> I had several R processes open the one time it did fail, but well,
>> I've had multiple of them open the times that the code didn't fail. So
>> having multiple R processes doesn't seem to be an issue.
>>
>> The line that triggers the segfault is used simply to test that
>> passing the argument 'minNum' to bumphunter::loessByCluster() via
>> '...' works. It's not a relevant test for derfinder and I was tempted
>> to remove it, although before tracing the bug I talked with Valerie
>> about not removing it. With the upcoming Bioconductor release I
>> decided to finally trace the line that triggers the segfault. At this
>> point I was feeling lost...
>>
>>
>> Running the following code seems to trigger the segfault more often (I
>> got it like 4 times in a row):
>>
>> library('derfinder')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE)
>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, smoothFunction =
>> bumphunter::runmedByCluster)
>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>
>> But then I can still run the same code without problems on a for loop
>> for 100 times:
>>
>> library('derfinder')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>>
>> for(i in 1:100) {
>>     print(i)
>>     regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE)
>>     regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, smoothFunction =
>> bumphunter::runmedByCluster)
>>     regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>> }
>> options(width = 120)
>> devtools::session_info()
>>
>>
>>
>>
>> I next thought of going through findRegions() to produce simple
>> objects that could reproduce the error. I had in mine sharing these
>> objects so it would be easier for others to help me figure out what
>> was failing. It turns out that this code segfaulted reliably (all the
>> times I tested it at least):
>>
>>
>> library('derfinder')
>> library('BiocParallel')
>> library('IRanges')
>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>> chunksize=1e3,
>>     colsubset=NULL)
>> fstats <- genomeFstats
>> position <- prep$position
>> weights <- NULL
>> cluster <- derfinder:::.clusterMakerRle(position, 300L)
>> cluster
>> BPPARAM <- SerialParam()
>> iChunks <- rep(1, length(cluster))
>>
>> fstatsChunks <- split(fstats, iChunks)
>> posChunks <- split(which(position), iChunks)
>> clusterChunks <- split(cluster, iChunks)
>> weightChunks <- vector('list', length = length(unique(iChunks)))
>>
>> res <- bpmapply(bumphunter::loessByCluster, fstatsChunks, posChunks,
>>     clusterChunks, weightChunks, MoreArgs = list(minNum = 1435),
>>     BPPARAM = BPPARAM, SIMPLIFY = FALSE)
>>
>> y <- fstatsChunks[[1]]
>> smoothed <- res[[1]]
>>
>> ## This segfaults:
>>  if(any(!smoothed$smoothed)) {
>>     smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>> }
>>
>>
>> The objects on the line that fail are a list and an Rle:
>>
>>> y
>> numeric-Rle of length 1434 with 358 runs
>>   Lengths:                    1                    5
>> ...                    1
>>   Values :       5.109484425367     3.85228949953674 ...
>> 3.99765511645983
>>> lapply(smoothed, head)
>> $fitted
>>      [,1]
>> [1,]   NA
>> [2,]   NA
>> [3,]   NA
>> [4,]   NA
>> [5,]   NA
>> [6,]   NA
>>
>> $smoothed
>> [1] FALSE FALSE FALSE FALSE FALSE FALSE
>>
>> $smoother
>> [1] "loess"
>>> table(!smoothed$smoothed)
>>
>> TRUE
>> 1434
>>> y[!smoothed$smoothed]
>> numeric-Rle of length 1434 with 358 runs
>>   Lengths:                    1                    5
>> ...                    1
>>   Values :       5.109484425367     3.85228949953674 ...
>> 3.99765511645983
>>
>> So in my derfinder code I was assigning an Rle to a matrix, and that
>> was the segfault. I have no idea why this doesn't always fail on OSX
>> and why it never failed on Linux or Windows.
>>
>>
>> This is the super simplified IRanges code that fails:
>>
>> library('IRanges')
>> y <- Rle(runif(10, 1, 1))
>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>>     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>> sessionInfo()
>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>
>> ## Segfault on OSX
>>
>>> library('IRanges')
>>> y <- Rle(runif(10, 1, 1))
>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>>>
>>> sessionInfo()
>> R Under development (unstable) (2016-10-26 r71594)
>> Platform: x86_64-apple-darwin13.4.0 (64-bit)
>> Running under: macOS Sierra 10.12.3
>>
>> locale:
>> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>>
>> attached base packages:
>> [1] stats4    parallel  stats     graphics  grDevices utils
>> datasets  methods   base
>>
>> other attached packages:
>> [1] IRanges_2.9.19      S4Vectors_0.13.15   BiocGenerics_0.21.3
>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>
>>  *** caught segfault ***
>> address 0x7fcdc31dffe0, cause 'memory not mapped'
>>
>> Possible actions:
>> 1: abort (with core dump, if enabled)
>> 2: normal R exit
>> 3: exit R without saving workspace
>> 4: exit R saving workspace
>>
>>
>> ## No problems on Linux
>>
>>> library('IRanges')
>>> y <- Rle(runif(10, 1, 1))
>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>>>
>>> sessionInfo()
>> R version 3.3.1 Patched (2016-09-30 r71426)
>> Platform: x86_64-pc-linux-gnu (64-bit)
>> Running under: Red Hat Enterprise Linux Server release 6.6 (Santiago)
>>
>> locale:
>>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
>>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
>>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
>>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C
>>  [9] LC_ADDRESS=C               LC_TELEPHONE=C
>> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
>>
>> attached base packages:
>> [1] stats4    parallel  stats     graphics  grDevices datasets  utils
>> [8] methods   base
>>
>> other attached packages:
>> [1] IRanges_2.8.2       S4Vectors_0.12.2    BiocGenerics_0.20.0
>> [4] colorout_1.1-2
>>
>> loaded via a namespace (and not attached):
>> [1] tools_3.3.1
>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>
>>
>> Best,
>> Leo
>>
>>
>>
>> The session information for my first tests is below:
>>
>>> devtools::session_info()
>> Session info
>> -----------------------------------------------------------------------------------------------------------
>>
>>  setting  value
>>  version  R Under development (unstable) (2016-10-26 r71594)
>>  system   x86_64, darwin13.4.0
>>  ui       X11
>>  language (EN)
>>  collate  en_US.UTF-8
>>  tz       America/New_York
>>  date     2017-03-21
>>
>> Packages
>> ---------------------------------------------------------------------------------------------------------------
>>
>>  package              * version  date       source
>>  acepack                1.4.1    2016-10-29 CRAN (R 3.4.0)
>>  AnnotationDbi          1.37.4   2017-03-10 Bioconductor
>>  assertthat             0.1      2013-12-06 CRAN (R 3.4.0)
>>  backports              1.0.5    2017-01-18 CRAN (R 3.4.0)
>>  base64enc              0.1-3    2015-07-28 CRAN (R 3.4.0)
>>  Biobase                2.35.1   2017-02-23 Bioconductor
>>  BiocGenerics         * 0.21.3   2017-01-12 Bioconductor
>>  BiocParallel           1.9.5    2017-01-24 Bioconductor
>>  biomaRt                2.31.4   2017-01-13 Bioconductor
>>  Biostrings             2.43.5   2017-03-19 cran (@2.43.5)
>>  bitops                 1.0-6    2013-08-17 CRAN (R 3.4.0)
>>  BSgenome               1.43.7   2017-02-24 Bioconductor
>>  bumphunter           * 1.15.0   2016-10-23 Bioconductor
>>  checkmate              1.8.2    2016-11-02 CRAN (R 3.4.0)
>>  cluster                2.0.6    2017-03-16 CRAN (R 3.4.0)
>>  codetools              0.2-15   2016-10-05 CRAN (R 3.4.0)
>>  colorout             * 1.1-2    2016-11-15 Github
>> (jalvesaq/colorout at 6d84420)
>>  colorspace             1.3-2    2016-12-14 CRAN (R 3.4.0)
>>  crayon                 1.3.2    2016-06-28 CRAN (R 3.4.0)
>>  data.table             1.10.4   2017-02-01 CRAN (R 3.4.0)
>>  DBI                    0.6      2017-03-09 CRAN (R 3.4.0)
>>  DelayedArray           0.1.7    2017-02-17 Bioconductor
>>  derfinder            * 1.9.10   2017-03-17 cran (@1.9.10)
>>  derfinderHelper        1.9.4    2017-03-07 Bioconductor
>>  devtools               1.12.0   2016-12-05 CRAN (R 3.4.0)
>>  digest                 0.6.12   2017-01-27 CRAN (R 3.4.0)
>>  doRNG                  1.6      2014-03-07 CRAN (R 3.4.0)
>>  foreach              * 1.4.3    2015-10-13 CRAN (R 3.4.0)
>>  foreign                0.8-67   2016-09-13 CRAN (R 3.4.0)
>>  Formula                1.2-1    2015-04-07 CRAN (R 3.4.0)
>>  GenomeInfoDb         * 1.11.9   2017-02-08 Bioconductor
>>  GenomeInfoDbData       0.99.0   2017-02-14 Bioconductor
>>  GenomicAlignments      1.11.12  2017-03-16 cran (@1.11.12)
>>  GenomicFeatures        1.27.10  2017-03-16 cran (@1.27.10)
>>  GenomicFiles           1.11.4   2017-03-10 Bioconductor
>>  GenomicRanges        * 1.27.23  2017-02-25 Bioconductor
>>  ggplot2                2.2.1    2016-12-30 CRAN (R 3.4.0)
>>  gridExtra              2.2.1    2016-02-29 CRAN (R 3.4.0)
>>  gtable                 0.2.0    2016-02-26 CRAN (R 3.4.0)
>>  Hmisc                  4.0-2    2016-12-31 CRAN (R 3.4.0)
>>  htmlTable              1.9      2017-01-26 CRAN (R 3.4.0)
>>  htmltools              0.3.5    2016-03-21 CRAN (R 3.4.0)
>>  htmlwidgets            0.8      2016-11-09 CRAN (R 3.4.0)
>>  IRanges              * 2.9.19   2017-03-15 cran (@2.9.19)
>>  iterators            * 1.0.8    2015-10-13 CRAN (R 3.4.0)
>>  knitr                  1.15.1   2016-11-22 CRAN (R 3.4.0)
>>  lattice                0.20-34  2016-09-06 CRAN (R 3.4.0)
>>  latticeExtra           0.6-28   2016-02-09 CRAN (R 3.4.0)
>>  lazyeval               0.2.0    2016-06-12 CRAN (R 3.4.0)
>>  locfit               * 1.5-9.1  2013-04-20 CRAN (R 3.4.0)
>>  magrittr               1.5      2014-11-22 CRAN (R 3.4.0)
>>  Matrix                 1.2-8    2017-01-20 CRAN (R 3.4.0)
>>  matrixStats            0.51.0   2016-10-09 CRAN (R 3.4.0)
>>  memoise                1.0.0    2016-01-29 CRAN (R 3.4.0)
>>  munsell                0.4.3    2016-02-13 CRAN (R 3.4.0)
>>  nnet                   7.3-12   2016-02-02 CRAN (R 3.4.0)
>>  pkgmaker               0.22     2014-05-14 CRAN (R 3.4.0)
>>  plyr                   1.8.4    2016-06-08 CRAN (R 3.4.0)
>>  qvalue                 2.7.0    2016-10-23 Bioconductor
>>  R6                     2.2.0    2016-10-05 CRAN (R 3.4.0)
>>  RColorBrewer           1.1-2    2014-12-07 CRAN (R 3.4.0)
>>  Rcpp                   0.12.10  2017-03-19 CRAN (R 3.4.0)
>>  RCurl                  1.95-4.8 2016-03-01 CRAN (R 3.4.0)
>>  registry               0.3      2015-07-08 CRAN (R 3.4.0)
>>  reshape2               1.4.2    2016-10-22 CRAN (R 3.4.0)
>>  rngtools               1.2.4    2014-03-06 CRAN (R 3.4.0)
>>  rpart                  4.1-10   2015-06-29 CRAN (R 3.4.0)
>>  Rsamtools              1.27.13  2017-03-14 cran (@1.27.13)
>>  RSQLite                1.1-2    2017-01-08 CRAN (R 3.4.0)
>>  rtracklayer            1.35.9   2017-03-19 cran (@1.35.9)
>>  S4Vectors            * 0.13.15  2017-02-14 cran (@0.13.15)
>>  scales                 0.4.1    2016-11-09 CRAN (R 3.4.0)
>>  stringi                1.1.2    2016-10-01 CRAN (R 3.4.0)
>>  stringr                1.2.0    2017-02-18 CRAN (R 3.4.0)
>>  SummarizedExperiment   1.5.7    2017-02-23 Bioconductor
>>  survival               2.41-2   2017-03-16 CRAN (R 3.4.0)
>>  testthat             * 1.0.2    2016-04-23 CRAN (R 3.4.0)
>>  tibble                 1.2      2016-08-26 CRAN (R 3.4.0)
>>  VariantAnnotation      1.21.17  2017-02-12 Bioconductor
>>  withr                  1.0.2    2016-06-20 CRAN (R 3.4.0)
>>  XML                    3.98-1.5 2016-11-10 CRAN (R 3.4.0)
>>  xtable                 1.8-2    2016-02-05 CRAN (R 3.4.0)
>>  XVector                0.15.2   2017-02-02 Bioconductor
>>  zlibbioc               1.21.0   2016-10-23 Bioconductor
>>
>> _______________________________________________
>> Bioc-devel at r-project.org mailing list
>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=hEBTd8bPfLVp6HoN3XSBk6ppmeRZhdLoB8VseYM_Byk&e=
>>
>>
>


This email message may contain legally privileged and/or...{{dropped:2}}



More information about the Bioc-devel mailing list