[Bioc-devel] Deseq2 and differentia expression
jarod_v6 at libero.it
jarod_v6 at libero.it
Thu Jul 10 13:59:29 CEST 2014
Hi there!!!
I have did this code:
SampleTable <-data.frame(SampleName=metadata$ID_CLINICO,fileName=metadata$NOME,
condition=metadata$CONDITION,prim=metadata$CDT)
ddHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable=SampleTable,directory="
Count/", design= ~condition) # effetto dello mutazione
ddHTSeq$condition <- relevel(ddHTSeq$condition, "NVI")# quindi verso non
viscerali
dds <- DESeq(ddHTSeq)
res <-results(dds)
resOrdered <- res[order(res$padj),]
head(resOrdered)
ResSig <- res[ which(res$padj < 0.1 ), ]
I want to select some data. How can I do? which is the good cut-off on FDR
values?
All the data have a FDR less thank 0.1 . :
Is it right this comand?
res[ which(res$padj < 0.1 ), ]
How many significant genes are with FDR less than 0.1 and have an absolute
value of foldchange more of 1 ? I have and error on this. I have many NA
values.
If I try this code I have the follow errors
> significant.genes = res[(res$padj < .05 & abs(res$log2FoldChange) >= 1 ),] #
Set thethreshold for the log2 fold change.
Error in normalizeSingleBracketSubscript(i, x, byrow = TRUE, exact = FALSE) :
subscript contains NAs
How can I resolve this problenms?
thanks in advance for the help
R version 3.1.0 (2014-04-10)
Platform: i686-pc-linux-gnu (32-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] splines parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] annotate_1.40.1 RColorBrewer_1.0-5 gplots_2.14.1
[4] org.Hs.eg.db_2.10.1 ReportingTools_2.4.0 AnnotationDbi_1.24.0
[7] RSQLite_0.11.4 DBI_0.2-7 knitr_1.6
[10] biomaRt_2.18.0 DESeq2_1.4.5 RcppArmadillo_0.4.320.0
[13] Rcpp_0.11.2 GenomicRanges_1.14.4 XVector_0.2.0
[16] IRanges_1.20.7 affy_1.40.0 NOISeq_2.6.0
[19] Biobase_2.22.0 BiocGenerics_0.8.0
loaded via a namespace (and not attached):
[1] affyio_1.30.0 AnnotationForge_1.4.4 BiocInstaller_1.
12.1
[4] Biostrings_2.30.1 biovizBase_1.10.8 bitops_1.0-
6
[7] BSgenome_1.30.0 Category_2.28.0 caTools_1.
17
[10] cluster_1.15.2 colorspace_1.2-4 dichromat_2.0-
0
[13] digest_0.6.4 edgeR_3.4.2 evaluate_0.
5.5
[16] formatR_0.10 Formula_1.1-1 gdata_2.
13.3
[19] genefilter_1.44.0 geneplotter_1.40.0 GenomicFeatures_1.
14.5
[22] ggbio_1.10.16 ggplot2_1.0.0 GO.db_2.
10.1
[25] GOstats_2.28.0 graph_1.40.1 grid_3.
1.0
[28] gridExtra_0.9.1 GSEABase_1.24.0 gtable_0.
1.2
[31] gtools_3.4.1 Hmisc_3.14-4 hwriter_1.
3
[34] KernSmooth_2.23-12 lattice_0.20-29 latticeExtra_0.6-
26
[37] limma_3.18.13 locfit_1.5-9.1 MASS_7.3-
33
[40] Matrix_1.1-4 munsell_0.4.2 PFAM.db_2.
10.1
[43] plyr_1.8.1 preprocessCore_1.24.0 proto_0.3-
10
[46] RBGL_1.38.0 RCurl_1.95-4.1 reshape2_1.
4
[49] R.methodsS3_1.6.1 R.oo_1.18.0 Rsamtools_1.
14.3
[52] rtracklayer_1.22.7 R.utils_1.32.4 scales_0.
2.4
[55] stats4_3.1.0 stringr_0.6.2 survival_2.37-
7
[58] tools_3.1.0 VariantAnnotation_1.8.13 XML_3.98-
1.1
[61] xtable_1.7-3 zlibbioc_1.8.0
More information about the Bioc-devel
mailing list