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Chapter 1

The Lasso

1.1 The linear model with p < n

Let X be an n× p input matrix and Y ∈ Rn be an n-vector of responses. The
linear model is

Y = Xβ0 + ε,

where β0 ∈ Rp is an unknown vector of coefficients and ε ∈ Rn is a mean-zero
noise vector. This is a standard model in regression and Xβ0 is often called the
regression of Y on X. The least squares method, usually credited to Gauss, is
to estimate the unknown β0 by minimizing the Euclidean distance between Y
and the space spanned by the columns in X:

β̂LS := arg min
β∈Rp

‖Y −Xβ‖22.

The least squares estimator β̂LS is thus obtained by taking the coefficients of
the projection of Y on the column space of X. If X has full rank p we can write
it as

β̂LS = (XTX)−1XTY.

The estimated regression is then the projection vector

Xβ̂LS = X(XTX)−1XTY.

If the entries ε1, . . . , εn of the noise vector ε are uncorrelated and have common
variance σ2

0 one may verify that

IE‖X(β̂LS − β0)‖22 = σ2
0p.

We refer to the normalized quantity ‖X(β̂LS − β0)‖22/n as the prediction error:
if we use Xβ̂LS as prediction of a new (unobserved) response vector Ynew when
the input is X, then on average the squared error made is

IE‖Ynew − (Xβ̂LS)‖22/n = IE‖X(β̂LS − β0)‖22/n+ σ2
0.
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6 CHAPTER 1. THE LASSO

The first term in the above right-hand side is due to the estimation of β0 whereas
the second term σ2

0 is due to the noise in the new observation. We neglect the
unavoidable second term in our terminology. The mean prediction error is then

IE‖X(β̂LS − β0)‖22/n = σ2
0 ×

p

n
= σ2

0 ×
number of parameters

number of observations
.

In this monograph we are mainly concerned with models where p > n or even
p � n. Clearly, the just described least squares method then breaks down.
This chapter studies the so-called Lasso estimator β̂ when possibly p > n. Aim
is to show that

‖X(β̂ − β0)‖22/n = OIP

(
s0 log p

n

)
(1.1)

where s0 is the number of non-zero coefficients of β0 (or the number of in
absolute value “large enough” coefficients of β0). The active set S0 := {j :
β0
j 6= 0} is however not assumed to be known, nor its size s0 = |S0|.

1.2 The linear model with p ≥ n

Let Y ∈ Rn be an n-vector of real-valued observations and let X be a given n×p
design matrix. We concentrate from now on mainly on the high-dimensional
situation, which is the situation p ≥ n or even p� n.

Write the expectation of the response Y as

f0 := IEY.

The matrix X is fixed in this chapter, i.e., we consider the case of fixed design.
The entries of the vector f0 are thus the (conditional) expectation of Y given
X. Let ε := Y − f0 be the noise term.

The linear model is

f0 = Xβ0

where β0 is an unknown vector of coefficients. Thus this model assumes there
is a solution β0 of the equation f0 = Xβ0. In the high-dimensional situation
with rank(X) = n this is always the case: the linear model is never misspec-
ified. When there are several solutions we may take for instance a sparsest
solution, that is, a solution with the smallest number of non-zero coefficients.
Alternatively one may prefer a basis pursuit solution (Chen et al. [1998])

β0 := arg min

{
‖β‖1 : Xβ = f0

}
where ‖β‖1 :=

∑p
j=1 |βj | denotes the `1-norm of the vector β. We do not express

in our notation that basis pursuit may not generate a unique solution1.

1A suitable notation that expresses the non-uniqueness is β0 ∈ arg min{‖β‖1 : Xβ = f0}.
In our analysis, non-uniqueness is not a major concern.
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Aim is to construct an estimator β̂ of β0. When p > n the least squares
estimator β̂LS will not work: it will just reproduce the data by returning the
estimator Xβ̂LS = Y . This is called an instance of overfitting. Least squares
loss with an `1-regularization penalty can overcome the overfitting problem.
This method is called the Lasso. The Lasso estimator β̂ is presented in more
detail in (1.3) in Section 1.4.

1.3 Notation

For a vector v ∈ Rn we use the notation ‖v‖2n := vT v/n = ‖v‖22/n, where ‖ · ‖2
is the `2-norm. Write the (normalized) Gram matrix as Σ̂ := XTX/n. Thus
‖Xβ‖2n = βT Σ̂β, β ∈ Rp.

For a vector β ∈ Rp we denote its `1-norm by ‖β‖1 :=
∑p

j=1 |βj |. Its `∞-norm
is denoted by ‖β‖∞ := max1≤j≤p |βj |,

Let S ⊂ {1, . . . , p} be an index set. The vector βS ∈ Rp with the set S as
subscript is defined as

βj,S := βj l{j ∈ S}, j = 1, . . . , p. (1.2)

Thus βS is a p-vector with entries equal to zero at the indexes j /∈ S. We will
sometimes identify βS with the vector {βj}j∈S ∈ R|S|. The vector β−S has all
entries inside the set S set to zero, i.e. β−S = βSc where Sc = {j ∈ {1, . . . , p} :
j /∈ S} is the complement of the set S. The notation (1.2) allows us to write
β = βS + β−S .

The active set Sβ of a vector β ∈ Rp is Sβ := {j : βj 6= 0}. For a solution β0

of Xβ0 = f0, we denote its active set by S0 := Sβ0 and the cardinality of this
active set by s0 := |S0|.

The j-th column of X is denoted by Xj , j = 1, . . . , p (and if there is little risk
of confusion we also write Xi as the i-th row of the matrix X, i = 1, . . . , n).
For a set S ⊂ {1, . . . , p} the matrix with only columns in the set S is denoted
by XS := {Xj}j∈S . To fix the ordering of the columns here, we put them
in increasing in j ordering. The “complement” matrix of XS is denoted by
X−S := {Xj}j /∈S . Moreover, for j ∈ {1, . . . , p}, we let X−j := {Xk}k 6=j .

1.4 The Lasso, KKT and two point inequality

The Lasso estimator (Tibshirani [1996]) β̂ is a solution of the minimization
problem

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β‖1

}
. (1.3)

This estimator is the starting point from which we study more general norm-
penalized estimators. The Lasso itself will be the object of study in the rest
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of this chapter and in other chapters as well. Although “Lasso” refers to a
method rather than an estimator, we refer to β̂ as “the Lasso”. It is generally
not uniquely defined but we do not express this in our notation. This is a
justified in the sense that the theoretical results which we will present will hold
for any solution of minimization problem (1.3). The parameter λ ≥ 0 is a
given tuning parameter: large values will lead to a sparser solution β̂, that is,
a solution with more entries set to zero. In an asymptotic sense, λ will be
“small”, it will generally be of order

√
log p/n.

This Lasso β̂ satisfies the Karush-Kuhn-Tucker conditions or KKT-conditions
which say that

XT (Y −Xβ̂)/n = λẑ (1.4)

where ẑ is a p-dimensional vector with ‖ẑ‖∞ ≤ 1 and with ẑj = sign(β̂j) if

β̂j 6= 0. The latter can also be written as

ẑT β̂ = ‖β̂‖1.

The KKT-conditions follow from sub-differential calculus which defines the sub-
differential of the absolute value function x 7→ |x| as

∂|x| = {sign(x)}{x 6= 0}+ [−1, 1]{x = 0}.

Thus, ẑ ∈ ∂‖β̂‖1.

The KKT-conditions may be interpreted as the Lasso version of the normal
equations which are true for the least squares estimator. The KKT-conditions
will play an important role. They imply the almost orthogonality of X on the
one hand and the residuals Y −Xβ̂ on the other, in the sense that

‖XT (Y −Xβ̂)‖∞/n ≤ λ.

Recall that λ will (generally) be “small”. Furthermore, the KKT-conditions
are equivalent to: for any β ∈ Rp

(β − β̂)TXT (Y −Xβ̂)/n ≤ λ‖β‖1 − λ‖β̂‖1.

We will often refer to this inequality as the two point inequality. As we will see
in the proofs this is useful in conjunction with the two point margin: for any β
and β′

2(β′ − β)T Σ̂(β′ − β0) = ‖X(β′ − β0)‖2n − ‖X(β − β0)‖2n + ‖X(β′ − β)‖2n.

Thus the two point inequality can be written in the alternative form as

‖Y −Xβ̂‖2n − ‖Y −Xβ‖2n + ‖X(β̂ − β)‖2n ≤ 2λ‖β‖1 − 2λ‖β̂‖1, ∀ β.

The two point inequality was proved more generally by [Güler [1991], Lemma
2.2] and further extended by [Chen and Teboulle [1993], Lemma 3.2], see also
Lemma 3.3.1 in Section 3.3 or more generally Lemma 5.2.1 in Section 5.2.
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Another important inequality will be the convex conjugate inequality: for any
a, b ∈ R

2ab ≤ a2 + b2.

As a further look-ahead: in the case of loss functions other than least squares,
we will be facing convex functions that are not necessarily quadratic and then
the convex conjugate inequality is a consequence of Definition 5.2.2 in Section
5.2.

1.5 Dual norm and decomposability

As we will see, we will need a bound for the random quantity εTX(β̂ − β0)/n
in terms of ‖β̂ − β0‖1, or modifications thereof. Here one may apply the dual
norm inequality. The dual norm of ‖ · ‖1 is the `∞-norm ‖ · ‖∞. The dual norm
inequality says that for any two vectors w and β

|wTβ| ≤ ‖w‖∞‖β‖1.

Another important ingredient of the arguments to come is the decomposability
of the `1-norm:

‖β′‖1 = ‖β′S‖1 + ‖β′−S‖1 ∀ β′.

The decomposability implies what we call the triangle property:

‖β‖1 − ‖β′‖1 ≤ ‖βS − β′S‖1 + ‖β−S‖1 − ‖β′−S‖1,

where β and β′ are any two vectors and S ⊂ {1, . . . , p} is any index set. The
importance of triangle property is was highlighted in van de Geer [2001] in the
context of adaptive estimation. It has been invoked at first to derive non-sharp
oracle inequalities (see Bühlmann and van de Geer [2011] and its references).

1.6 Compatibility

We will need a notion of compatibility between the `1-norm and the Euclidean
norm ‖ · ‖n. This allows us to identify β0 to a certain extent.

Definition 1.6.1 (van de Geer [2007], Bühlmann and van de Geer [2011]) For
a constant L > 0 and an index set S, the compatibility constant is

φ̂2(L, S) := min

{
|S|‖XβS −Xβ−S‖2n : ‖βS‖1 = 1, ‖β−S‖1 ≤ L

}
.

We call L the stretching factor: generally L ≥ 1.

Example 1.6.1 Let S = {j} be the j-th variable for some j ∈ {1, . . . , p}. Then

φ̂2(L, {j}) = min

{
‖Xj −X−jγj‖2n : γj ∈ Rp−1, ‖γj‖1 ≤ L

}
.
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Note that the unrestricted minimum min{‖Xj − X−jγj‖n : γj ∈ Rp−1} is
the length of the anti-projection of the first variable Xj on the space spanned
by the remaining variables X−j. In the high-dimensional situation this unre-
stricted minimum will generally be zero. The `1-restriction ‖γj‖1 ≤ L poten-

tially takes care that the `1-restricted minimum φ̂(L, {j}) is strictly positive.
The `1-restricted minimization is the dual formulation for the Lasso which we
consider in the next section.

The compatibility constant φ̂2(L, S) measures the distance between the signed
convex hull of the variables in XS and linear combinations of variables in X−S
satisfying an `1-restriction (that is, the latter are restricted to lie within the
signed convex hull of L×X−S). Loosely speaking one may think of this as an
`1-variant of “(1− canonical correlation)”.

For general S one always has φ̂2(L, {j}) ≥ φ̂2(L, S)/|S| for all j ∈ S. The more
general case S ⊂ S is treated in the next lemma. It says that the larger the set
S the larger the effective sparsity2 |S|/φ̂2(L, S).

Lemma 1.6.1 For all L and S ⊂ S it holds that

|S|/φ̂2(L, S) ≤ |S|/φ̂2(L, S).

Proof of Lemma 1.6.1. Let

‖Xb‖2n := min

{
‖Xβ‖2n : ‖βS‖1 = 1, ‖β−S‖1 ≤ L

}
=
φ̂2(L, S)

|S|
.

Then ‖bS‖1 ≥ ‖bS‖1 = 1 and ‖b−S‖1 ≤ ‖b−S‖1 ≤ L. Thus, writing c = b/‖bS‖1,
we have ‖cS‖1 = 1 and ‖c−S‖1 = ‖b−S‖1/‖bS‖1 ≤ ‖b−S‖1 ≤ L. Therefore

‖Xb‖2n = ‖bS‖21‖Xc‖2n

≥ ‖bS‖21 min

{
‖Xβ‖2n : ‖βS‖1 = 1, ‖β−S‖1 ≤ L

}
= ‖bS‖21φ̂2(L, S)/|S| ≥ φ̂2(L, S)/|S|.

tu

1.7 A sharp oracle inequality

Let us summarize what are the main ingredients of the proof of Theorems 1.7.1
and 1.8.1 below:

- the two point margin

- two point inequality

2or non-sparsity actually
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- the dual norm inequality

- the triangle property, or decomposability

- the convex conjugate inequality

- compatibility

Finally, to control the `∞-norm of the random vector XT ε occurring below in
Theorem 1.7.1 (and onwards) we will use

- empirical process theory,

see Lemma 4.2.1 for the case of Gaussian errors ε. See also Corollary 6.1.1 for
a complete picture in the Gaussian case.

The paper Koltchinskii et al. [2011] (see also Koltchinskii [2011]) nicely com-
bines ingredients such as the above to arrive at general sharp oracle inequalities
for nuclear-norm penalized estimators for example. Theorem 1.7.1 below is a
special case of their results. The sharpness refers to the constant 1 in front of
‖X(β − β0)‖2n in the right-hand side of the result of the theorem.

Theorem 1.7.1 (Koltchinskii et al. [2011]) Let λε satisfy

λε ≥ ‖XT ε‖∞/n.

Define for λ > λε
λ := λ− λε, λ̄ := λ+ λε

and
L := λ̄/λ.

Then

‖X(β̂ − β0)‖2n ≤ min
S

{
min

β∈Rp, Sβ=S
‖X(β − β0)‖2n + λ̄2|S|/φ̂2(L, S)

}
.

Theorem 1.7.1 follows from Theorem 1.8.1 below by taking there δ = 0. It also
follows the general case given in Theorem 5.5.1. However, a reader preferring to
first consult a direct derivation before looking at generalizations may consider
the the proof given in Subsection 1.11.3. We call the set of β’s over which
we minimize, as in Theorem 1.7.1 “candidate oracles”. The minimizer is then
called the “oracle”. Note that the stretching factor L is indeed larger than one
and depends on the tuning parameter and the noise level λε. If there is no
noise, L = 1 (as then λε = 0). (However, with noise, it is not always a must to
take L > 1.)

1.8 Including a bound for the `1-error and allowing
many small values.

We will now show that if one increases the stretching factor L in the com-
patibility constant one can establish a bound for the `1-estimation error. We
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moreover will no longer insist that for candidate oracles β it holds that S = Sβ
as is done in Theorem 1.7.1, that is, we allow β to be non-sparse but then its
small coefficients should have small `1-norm. The result is a special case of the
results for general loss and penalty given in Theorem 5.5.1.

Theorem 1.8.1 Let λε satisfy

λε ≥ ‖XT ε‖∞/n.

Let 0 ≤ δ < 1 be arbitrary and define for λ > λε

λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.

Then for all β ∈ Rp and all sets S

2δλ‖β̂ − β‖1 + ‖X(β̂ − β0)‖2n ≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2(L, S)
+ 4λ‖β−S‖1. (1.5)

The proof of this result invokes the ingredients we have outlined in the previous
sections:
- the two point margin,
- two point inequality,
- the dual norm inequality,
- the triangle property,
- the convex conjugate inequality
- compatibility.
Similar ingredients will be used to cook up results with other loss functions
and regularization penalties. We remark here that for least squares loss one
also may take a different route where the “bias” and “variance” of the Lasso is
treated separately.

Proof of Theorem 1.8.1.
• If

(β̂ − β)T Σ̂(β̂ − β0) ≤ −δλ‖β̂ − β‖1 + 2λ‖β−S‖1

we find from the two point margin

2δλ‖β̂− β ‖1 + ‖X(β̂ − β0)‖2n
= 2δλ‖β̂ − β‖1 + ‖X(β − β0)‖2n − ‖X(β − β̂)‖2n + 2(β̂ − β)T Σ̂(β̂ − β0)

≤ ‖X(β − β0)‖2n + 4λ‖β−S‖1

and we are done.

• From now on we may therefore assume that

(β̂ − β)T Σ̂(β̂ − β0) ≥ −δλ‖β̂ − β‖1 + 2λ‖β−S‖1.
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By the two point inequality we have

(β̂ − β)T Σ̂(β̂ − β0) ≤ (β̂ − β)TXT ε/n+ λ‖β‖1 − λ‖β̂‖1.

By the dual norm inequality

|(β̂ − β)TXT ε|/n ≤ λε‖β̂ − β‖1.

Thus

(β̂ − β)T Σ̂( β̂ −β0)

≤ λε‖β̂ − β‖1 + λ‖β‖1 − λ‖β̂‖1
≤ λε‖β̂S − βS‖1 + λε‖β̂−S‖1 + λε‖β−S‖1 + λ‖β‖1 − λ‖β̂‖1.

By the triangle property and invoking λ = λ− λε this implies

(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂−S‖1 ≤ (λ+ λε)‖β̂S − βS‖1 + (λ+ λε)‖β−S‖1

and so

(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂−S − β−S‖1 ≤ (λ+ λε)‖β̂S − βS‖1 + 2λ‖β−S‖1.

Hence, invoking λ̄ = λ+ λε + δλ,

(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂−S − β−S‖1 + δλ‖β̂S − βS‖1 (1.6)

≤ λ̄‖β̂S − βS‖1 + 2λ‖β−S‖1.

Since (β̂ − β)T Σ̂(β̂ − β0) ≥ −δλ‖β̂ − β‖1 + 2λ‖β−S‖1 this gives

(1− δ)λ‖β̂−S − β−S‖1 ≤ λ̄‖β̂S − βS‖1

or
‖β̂−S − β−S‖1 ≤ L‖β̂S − βS‖1.

But then by the definition of the compatibility constant

‖β̂S − βS‖1 ≤
√
|S|‖X(β̂ − β)‖n/φ̂(L, S). (1.7)

Continue with inequality (1.6) and apply the convex conjugate inequality:

(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂−S − β−S‖1 + δλ‖β̂S − βS‖1

≤ λ̄
√
|S|‖X(β̂ − β)‖n/φ̂(L, S) + 2λ‖β−S‖1

≤ 1

2

λ̄2|S|
φ̂2(L, S)

+
1

2
‖X(β̂ − β)‖2n + 2λ‖β−S‖1.

Invoking the two point margin

2(β̂ − β)T Σ̂(β̂ − β0) = ‖X(β̂ − β0)‖2n − ‖X(β − β0)‖2n + ‖X(β̂ − β)‖2n,

we obtain

‖X(β̂ − β0)‖2n + 2λ‖β̂−S − β−S‖1 + 2δλ‖β̂S − βS‖1
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≤ ‖X(β − β0)‖2n + λ̄2|S|/φ̂2(L, S) + 4λ‖β−S‖1.

tu

What we see from Theorem 1.8.1 is firstly that the tuning parameter λ should
be sufficiently large to “overrule” the part due to the noise ‖XT ε‖∞/n. Since
‖XT ε‖∞/n is random, we need to complete the theorem with a bound for this
quantity that holds with large probability. See Corollary 6.1.1 in Section 6.1 for
this completion for the case of Gaussian errors. One sees there that one may
choose λ �

√
log p/n. Secondly, by taking β = β0 we deduce from the theorem

that the prediction error ‖X(β̂ − β0)‖2n is bounded by λ̄2|S0|/φ̂2(L, S0) where
S0 is the active set of β0. In other words, we reached the aim (1.1) of Section
1.1, under the conditions that the part due to the noise behaves like

√
log p/n

and that the compatibility constant φ̂2(L, S0) stays away from zero.

A third insight from Theorem 1.8.1 is that the Lasso also allows one to bound
the estimation error in ‖ · ‖1-norm, provided that the stretching constant L
is taken large enough. This makes sense as a compatibility constant that can
stand a larger L tells us that we have good identifiability properties. Here is
an example statement for the `1-estimation error.

Corollary 1.8.1 As an example, take β = β0 and take S = S0 as the active
set of β0 with cardinality s0 = |S0|. Let us furthermore choose λ = 2λε and
δ = 1/5. The following `0-sparsity based bound holds under the conditions of
Theorem 1.8.1:

‖β̂ − β0‖1 ≤ C0
λεs0

φ̂2(4, S0)
,

where C0 = (16/5)2(5/2).

Finally, it is important to note that we do not insist that β0 is sparse. The result
of Theorem 1.8.1 is good if β0 can be well approximated by a sparse vector β or
by a vector β with many smallish coefficients. The smallish coefficients occur
in a term proportional to ‖β−S‖1. By minimizing the bound over all candidate
oracles β and all sets S one obtains the following corollary.

Corollary 1.8.2 Under the conditions of Theorem 1.8.1, and using its nota-
tion, we have the following trade-off bound:

2δλ‖β̂ − β0‖1 + ‖X(β̂ − β0)‖2n

≤ min
β∈Rp

min
S⊂{1,...,p}

{
2δλ‖β−β0‖1 +‖X(β−β0)‖2n+

λ̄2|S|
φ̂2(L, S)

+4λ‖β−S‖1
}
. (1.8)

We will refer to the minimizer (β∗, S∗) in (1.8) as the (or an) oracle. Corollary
1.8.2 says that the Lasso mimics the oracle (β∗, S∗). It trades off approximation
error, sparsity and the `1-norm ‖β−S‖1 of smallish coefficients. In general, we
will define oracles in a loose sense, not necessarily the overall minimizer over all
candidate oracles and furthermore constants in the various appearances may be
(somewhat) different.
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One can make two types of restrictions on the set of candidate oracles. The first
one, considered in the next section (Section 1.9) requires that the pair (β, S)
has S = Sβ so that the term with the smallish coefficients ‖β−S‖1 vanishes. A
second type of restriction is to require β = β0 but optimize over S, i.e., the
consider only candidate oracles (β0, S). This is done in Section 1.10.

1.9 The `1-restricted oracle

Restricting ourselves to candidate oracles (β, S) with S = Sβ in Corollary 1.8.2
leads to a trade-off between the the `1-error ‖β − β0‖1, the approximation
error ‖X(β − β0)‖2n and the sparseness |S| (or rather the effective sparseness
|S|/φ̂2(L, S)). To study this let us consider the oracle β∗ which trades off
approximation error and (effective) sparsity but is meanwhile restricted to have
an `1-norm at least as large as that of β0.

Lemma 1.9.1 Let for some λ̄ the vector β∗ be defined as

β∗ := arg min

{
‖X(β − β0)‖2n + λ̄2|Sβ|/φ̂2(L, Sβ) : ‖β‖1 ≥ ‖β0‖1

}
.

Let S∗ := Sβ∗ = {j : β∗j 6= 0} be the active set of β∗. Then

λ̄‖β∗ − β0‖1 ≤ ‖X(β∗ − β0)‖2n +
λ̄2|S∗|
φ̂2(1, S∗)

.

Proof of Lemma 1.9.1. Since ‖β0‖1 ≤ ‖β∗‖1 we know by the `1-triangle
property

‖β0
−S∗‖1 ≤ ‖β

∗ − β0
S∗‖1.

Hence by the definition of the compatibility constant and by the convex conju-
gate inequality

λ̄‖β∗−β0‖1 ≤ 2λ̄‖β∗−β0
S∗‖1 ≤

2λ̄‖X(β∗ − β0)‖n
φ̂(1, S∗)

≤ ‖X(β∗−β0)‖2n+
λ̄2|S∗|
φ̂2(1, S∗)

.

tu

From Lemma 1.9.1 we see that an `1-restricted oracle β∗ that trades off approx-
imation error and sparseness is also going to be close in `1-norm. We have the
following corollary for the bound of Theorem 1.8.1.

Corollary 1.9.1 Let
λε ≥ ‖XT ε‖∞/n.

Let 0 ≤ δ < 1 be arbitrary and define for λ > λε

λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.
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Let the vector β∗ with active set S∗ be defined as in Lemma 1.9.1. We have

λ‖β̂ − β0‖1 ≤
(
λ̄+ 2δλ

2δλ̄

)(
‖X(β∗ − β0)‖2n +

λ̄2|S∗|
φ̂2(L, S∗)

)
.

1.10 Weak sparsity

In the previous section we found a bound for the trade-off in Corollary 1.8.2
by considering the `1-restricted oracle. In this section we take an alternative
route, where we take in Theorem 1.8.1 candidate oracles (β, S) with the vector
β equal to β0 as in Corollary 1.8.1, but now S not necessarily equal to the
active set S0 := {j : β0

j 6= 0} of β0. We define

ρrr :=

p∑
j=1

|β0
j |r, (1.9)

where 0 < r < 1. The constant ρr > 0 is assumed to be “not too large”. This
is sometimes called weak sparsity as opposed to strong sparsity which requires
“not too many” non-zero coefficients

s0 := #{β0
j 6= 0}.

Observe that this is a limiting case in the sense that

lim
r↓0

ρrr = s0.

Lemma 1.10.1 Suppose β0 satisfies the weak sparsity condition (1.9) for some
0 < r < 1 and ρr > 0. Then for any λ̄ and λ

min
S

{
λ̄2|S|

φ̂2(L, S)
+ 4λ‖β0

−S‖1
}
≤ 5λ̄2(1−r)λrρrr

φ̂2(L, S∗)
,

where S∗ := {j : |β0
j | > λ̄2/λ} and assuming φ̂(L, S) ≤ 1 for any L and S (to

simplify the expressions).

Proof of Lemma 1.10.1. Define λ∗ := λ̄2/λ. Then S∗ = {j : |β0
j | > λ∗}. We

get
|S∗| ≤ λ−r∗ ρrr = λ̄2(1−r)λrρrr.

Moreover

‖β0
−S∗‖1 ≤ λ

1−r
∗ ρrr = λ̄2(1−r)λr−1ρrr ≤ λ̄2(1−r)λr−1ρrr/φ̂

2(L, S∗),

since by assumption φ̂2(L, S∗) ≤ 1. tu

As a consequence, we obtain bounds for the prediction error and `1-error of the
Lasso under (weak) sparsity. We only present the bound for the `1-error.

We make some arbitrary choices for the constants: we set λ = 2λε and we
choose δ = 1/5.
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Corollary 1.10.1 Assume the `r-sparsity condition (1.9) for some 0 < r < 1
and ρr > 0. Set

S∗ := {j : |β0
j | > 3λε}.

Then for λε ≥ ‖XT ε‖∞/n and λ = 2λε, we have the `r-sparsity based bound

‖β̂ − β0‖1 ≤ Crλ1−r
ε ρrr/φ̂

2(4, S∗).

assuming that φ̂(L, S) ≤ 1 for any L and S. The constant Cr = (16/5)2(1−r)(52/2r)
depends only on r.

1.11 Complements

1.11.1 An alternative bound for the `1-error

Theorem 5.6.1 provides an alternative (and “dirty” in the sense that not much
care was paid to optimize the constants) way to prove bounds for the `1-error.
This route gives a perhaps clearer picture of the relation between the stretching
constant L and the parameter δ controlling the `1-estimation error.

Corollary 1.11.1 (Corollary of Theorem 5.6.1.) Let β̂ be the Lasso

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β‖1

}
.

Take λε ≥ ‖XT ε‖∞/n and λ ≥ 8λε/δ. Then for all β ∈ Rp and sets S

λδ‖β̂ − β‖1 ≤
2λ2(1 + δ)2|S|
φ̂2(1/(1− δ), S)

+ 4‖X(β − β0)‖2n + 16λ‖β−S‖1.

1.11.2 When there are coefficients left unpenalized

In most cases one does not penalize the constant term in the regression. More
generally, suppose that the set of coefficients that are not penalized have indices
U ⊂ {1, . . . , p}. The Lasso estimator is then

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λ‖β−U‖1

}
.

The KKT-conditions are now

XT (Y −Xβ̂)/n+ λẑ−U = 0, ‖ẑ−U‖∞ ≤ 1, zT−U β̂−U = ‖β̂−U‖1.
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1.11.3 A direct proof of Theorem 1.7.1.

Fix some β ∈ Rp. The derivation of Theorem 1.7.1 is identical to the one of
Theorem 1.8.1 except for the fact that we consider the case δ = 0 and S = Sβ.
These restrictions lead to a somewhat more transparent argumentation.

• If
(β̂ − β)T Σ̂(β̂ − β0) ≤ 0

we find from the two point margin

‖X(β̂ − β0)‖2n = ‖X(β − β0)‖2n − ‖X(β − β̂)‖2n + 2(β̂ − β)T Σ̂(β̂ − β0)

≤ ‖X(β − β0)‖2n.

Hence then we are done.

• Suppose now that
(β̂ − β)T Σ̂(β̂ − β0) ≥ 0.

By the two point inequality

(β − β̂)TXT (Y −Xβ̂)/n ≤ λ‖β‖1 − λ‖β̂‖1.

As Y = Xβ0 + ε

(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂‖1 ≤ (β̂ − β)TXT ε/n+ λ‖β‖1.

By the dual norm inequality

|(β̂ − β)TXT ε|/n ≤ (‖XT ε‖∞/n)‖β̂ − β‖1 ≤ λε‖β̂ − β‖1.

Thus
(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂‖1 ≤ λε‖β̂ − β‖1 + λ‖β‖1.

By the triangle property this implies

(β̂ − β)T Σ̂(β̂ − β0) + (λ− λε)‖β̂−S‖1 ≤ (λ+ λε)‖β̂S − β‖1.

or
(β̂ − β)T Σ̂(β̂ − β0) + λ‖β̂−S‖1 ≤ λ̄‖β̂S − β‖1. (1.10)

Since (β̂ − β)T Σ̂(β̂ − β0) ≥ 0 this gives

‖β̂−S‖1 ≤ (λ̄/λ)‖β̂S − β‖1 = L‖β̂S − β‖1.

By the definition of the compatibility constant φ̂2(L, S) we then have

‖β̂S − β‖1 ≤
√
|S|‖X(β̂ − β)‖n/φ̂(L, S). (1.11)

Continue with inequality (1.10) and apply the convex conjugate inequality

(β̂ − β)T Σ̂(β̂ − β0) + λ‖ β̂−S ‖1
≤ λ̄

√
|S|‖X(β̂ − β)‖n/φ̂(L, S)

≤ 1

2

λ̄2|S|
φ̂2(L, S)

+
1

2
‖X(β̂ − β)‖2n.
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Since by the two point margin

2(β̂ − β0)T Σ̂(β̂ − β) = ‖X(β̂ − β0)‖2n − ‖X(β − β0)‖2n + ‖X(β̂ − β)‖2n,

we obtain

‖X(β̂ − β0)‖2n + 2λ‖β̂−S‖1 ≤ ‖X(β − β0)‖2n + λ̄2|S|/φ̂2(L, S).

tu
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Chapter 2

The square-root Lasso

2.1 Introduction

Consider as in the previous chapter the linear model

Y = Xβ0 + ε.

In the previous chapter we required that the tuning parameter λ for the Lasso
defined in Section 1.4 is chosen at least as large as the noise level λε where λε
is a bound for ‖εTX‖∞/n. Clearly, if for example the entries in ε are i.i.d. with
variance σ2

0, the choice of λ will depend on the standard deviation σ0 which will
usually be unknown in practice. To avoid this problem, Belloni et al. [2011]
introduced (and studied) the square-root Lasso

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖n + λ0‖β‖1

}
.

Again, we do not express in our notation that the estimator is in general not
uniquely defined by the above inequality. The results to come hold for any
solution.

The square-root Lasso can be seen as a method that estimates β0 and the noise
variance σ2

0 simultaneously. Defining the residuals ε̂ := Y − Xβ̂ and letting
σ̂2 := ‖ε̂‖2n one clearly has

(β̂, σ̂2) = arg min
β∈Rp, σ2>0

{
‖Y −Xβ‖2n

σ
+ σ + 2λ0‖β‖1

}
(2.1)

(up to uniqueness) provided the minimum is attained at a non-zero value of σ2.

We note in passing that the square-root Lasso is not a quasi-likelihood estima-
tor as the function exp[−z2/σ − σ], z ∈ R, is not a density with respect to a
dominating measure not depending on σ2 > 0. The square-root Lasso is more-
over not to be confused with the scaled Lasso. See Section 2.7 for our definition
of the latter. The scaled Lasso as we define it there is a quasi-likelihood esti-
mator. It is studied in e.g. the paper Sun and Zhang [2010] which comments

21
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on Städler et al. [2010]. In their rejoinder Städler et al. [2010] the name scaled
Lasso is used. Some confusion arises as for example Sun and Zhang [2012] call
the square-root Lasso the scaled Lasso.

2.2 KKT and two point inequality for the square-
root Lasso

When σ̂ > 0 the square-root Lasso β̂ satisfies the KKT-conditions

XT (Y −Xβ̂)/n

‖Y −Xβ̂‖n
= λ0ẑ (2.2)

where ‖ẑ‖∞ ≤ 1 and ẑj = sign(β̂j) if β̂j 6= 0.

These KKT-conditions (2.2) again follow from sub-differential calculus. Indeed,
for a fixed σ > 0 the sub-differential with respect to β of the expression in curly
brackets given in (2.1) is equal to

−2XT (Y −Xβ)/n

σ
+ 2λ0z(β)

with, for j = 1, . . . , p, zj(β) the sub-differential of βj 7→ |βj |. Setting this to

zero at (β̂, σ̂) gives the above KKT-conditions (2.2).

2.3 A proposition assuming no overfitting

If ‖ε̂‖n = 0 the square-root Lasso returns a degenerate solution which overfits.
We assume now that ‖ε̂‖n > 0 and show in the next section that this is the case
under `1-sparsity conditions.

We define

R̂ :=
‖XT ε‖∞
n‖ε‖n

.

A probability inequality for R̂ for the case of normally distributed errors is
given in Lemma 4.2.2. See also Corollary 6.1.2 for a complete picture for the
Gaussian case.

Proposition 2.3.1 Suppose ‖ε̂‖n > 0. Let R̂ ≤ R for some constant R > 0.
Let λ0 satisfy

λ0‖ε̂‖n ≥ R‖ε‖n.

Let 0 ≤ δ < 1 be arbitrary and define

λ̂L‖ε‖n := λ0‖ε̂‖n −R‖ε‖n, λ̂U‖ε‖n := λ0‖ε̂‖n +R‖ε‖n + δλ̂L‖ε‖n

and

L̂ :=
λ̂U

(1− δ)λ̂L

.
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Then

2δλ̂L‖β̂ − β0‖1‖ε‖n + ‖X(β̂ − β0)‖2n

≤ min
S⊂{1,...,p}

min
β∈Rp

{
2δλ̂L‖β − β0‖1‖ε‖n + ‖X(β − β0)‖2n

+
λ̂2

U‖ε‖2n|S|
φ̂2(L̂, S)

+ 4λ0‖ε̂‖n‖β−S‖1
}
.

Proof of Proposition 2.3.1. The estimator β̂ satisfies the KKT-conditions
(2.2) which are exactly the KKT-conditions (1.4) but with λ replaced by λ0‖ε̂‖n.
This means we can recycle the proof of Theorem 1.8.1. tu

2.4 Showing the square-root Lasso does not overfit

Proposition 2.3.1 is not very useful as such as it assumes ‖ε̂‖n > 0 and depends
also otherwise on the value of ‖ε̂‖n. We therefore provide bounds for this
quantity.

Lemma 2.4.1 Let λ0 be the tuning parameter used for the square-root Lasso.
Suppose that for some 0 < η < 1, some R > 0 and some σ > 0, we have

λ0(1− η) ≥ R

and

λ0‖β0‖1/σ ≤ 2

(√
1 + (η/2)2 − 1

)
. (2.3)

Then on the set where R̂ ≤ R and ‖ε‖n ≥ σ we have

∣∣∣∣‖ε̂‖n/‖ε‖n − 1

∣∣∣∣ ≤ η.

The constant
√

1 + (η/2)2− 1 is not essential, one may replace it by a prettier-
looking lower bound. Note that it is smaller than (η/2)2 but for η small it is
approximately equal to (η/2)2. In an asymptotic formulation, say with i.i.d.
standard normal noise, the conditions of Lemma 2.4.1 are met when ‖β0‖1 =
o(
√
n/ log p) and λ0 �

√
log p/n is suitably chosen.

The proof of the lemma makes use of the convexity of the least-squares loss
function and of the penalty.

Proof of Lemma 2.4.1. Suppose R̂ ≤ R and ‖ε‖n ≥ σ. First we note that
the inequality (2.3) gives

λ0‖β0‖1/‖ε‖n ≤ 2

(√
1 + (η/2)2 − 1

)
.

For the upper bound for ‖ε̂‖n we use that

‖ε̂‖n + λ0‖β̂‖1 ≤ ‖ε‖n + λ0‖β0‖1
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by the definition of the estimator. Hence

‖ε̂‖n ≤ ‖ε‖n + λ0‖β0‖1 ≤
[
1 + 2

(√
1 + (η/2)2 − 1

)]
‖ε‖n ≤ (1 + η)‖ε‖n.

For the lower bound for ‖ε̂‖n we use the convexity of both the loss function and
the penalty. Define

t :=
η‖ε‖n

η‖ε‖n + ‖X(β̂ − β0)‖n
.

Note that 0 < t ≤ 1. Let β̂t be the convex combination β̂t := tβ̂ + (1 − t)β0.
Then

‖X(β̂t − β0)‖n = t‖X(β̂ − β0)‖n =
η‖ε‖n‖X(β̂ − β0)‖n
η‖ε‖n + ‖X(β̂ − β0)‖n

≤ η‖ε‖n.

Define ε̂t := Y −Xβ̂t. Then, by convexity of ‖ · ‖n and ‖ · ‖1,

‖ε̂t‖n + λ0‖β̂t‖1 ≤ t‖ε̂‖n + tλ0‖β̂‖1 + (1− t)‖ε‖n + (1− t)λ0‖β0‖1

≤ ‖ε‖n + λ0‖β0‖1
where in the last step we again used that β̂ minimizes ‖Y − Xβ‖n + λ0‖β‖1.
Taking squares on both sides gives

‖ε̂t‖2n + 2λ0‖β̂t‖1‖ε̂t‖n + λ2
0‖β̂t‖21 ≤ ‖ε‖2n + 2λ0‖β0‖1‖ε‖n + λ2

0‖β0‖21. (2.4)

But

‖ε̂t‖2n = ‖ε‖2n − 2εTX(β̂t − β0)/n+ ‖X(β̂t − β0)‖2n
≥ ‖ε‖2n − 2R‖β̂t − β0‖1‖ε‖n + ‖X(β̂t − β0)‖2n
≥ ‖ε‖2n − 2R‖β̂t‖1‖ε‖n − 2R‖β0‖1‖ε‖n + ‖X(β̂t − β0)‖2n.

Moreover, by the triangle inequality

‖ε̂t‖n ≥ ‖ε‖n − ‖X(β̂t − β0)‖n ≥ (1− η)‖ε‖n.

Inserting these two inequalities into (2.4) gives

‖ε‖2n − 2R‖β̂t‖1‖ ε ‖1 − 2R‖β0‖1‖ε‖n
+ ‖X(β̂t − β0)‖2n + 2λ0(1− η)‖β̂t‖1‖ε‖n + λ2

0‖β̂t‖21
≤ ‖ε‖2n + 2λ0‖β0‖1‖ε‖n + λ2

0‖β0‖21

which implies by the assumption λ0(1− η) ≥ R

‖X(β̂t − β0)‖2n ≤ 2(λ0 +R)‖β0‖1‖ε‖1 + λ2
0‖β0‖21

≤ 4λ0‖β0‖1‖ε‖1 + λ2
0‖β0‖21
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where in the last inequality we used R ≤ (1 − η)λ0 ≤ λ0. But continuing we
see that we can write the last expression as

4λ0‖β0‖1‖ε‖n + λ2
0‖β0‖21 =

(
(λ0‖β0‖1/‖εn‖n + 2)2 − 4

)
‖ε‖2n.

Again invoke the `1-sparsity condition

λ0‖β0‖1/‖ε‖n ≤ 2

(√
1 + (η/2)2 − 1

)
to get (

(λ0‖β0‖1/‖εn‖n + 2)2 − 4

)
‖ε‖2n ≤

η2

4
‖ε‖2n.

We thus established that

‖X(β̂t − β0)‖n ≤
η‖ε‖n

2
.

Rewrite this to
η‖ε‖n‖X(β̂ − β0)‖n
η‖ε‖n + ‖X(β̂ − β0)‖n

≤ η‖ε‖n
2

,

and rewrite this in turn to

η‖ε‖n‖X(β̂ − β0)‖n ≤
η2‖ε‖2n

2
+
η‖ε‖n‖X(β̂ − β0)‖n

2

or
‖X(β̂ − β0)‖n ≤ η‖ε‖n.

But then, by repeating the argument, also

‖ε̂‖n ≥ ‖ε‖n − ‖X(β̂ − β0)‖n ≥ (1− η)‖ε‖n.

tu

2.5 A sharp oracle inequality for the square-root Lasso

We combine the results of the two previous sections.

Theorem 2.5.1 Assume the `1-sparsity (2.3) for some 0 < η < 1 and σ > 0,
i.e.

λ0‖β0‖1/σ ≤ 2

(√
1 + (η/2)2 − 1

)
.

Let λ0 satisfy for some R > 0

λ0(1− η) > R.

Let 0 ≤ δ < 1 be arbitrary and define

λ0 := λ0(1− η)−R,
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λ̄0 := λ0(1 + η) +R+ δλ0

and

L :=
λ̄0

(1− δ)λ0

.

Then on the set where R̂ ≤ R and ‖ε‖n ≥ σ, we have

2δλ0‖β̂ − β0‖1‖ε‖n + ‖X(β̂ − β0)‖2n

≤ min
S∈{1,...,p}

min
β∈Rp

{
2δλ0‖β − β0‖1‖ε‖n + ‖X(β − β0)‖2n

+
λ̄2

0|S|‖ε‖2n
φ̂2(L, S)

+ 4λ0(1 + η)‖ε‖n‖β−S‖1
}
. (2.5)

Proof of Theorem 2.5.1. This follows from the same arguments as those
used for Theorem 1.8.1, and inserting Lemma 2.4.1. tu

The minimizer (β∗, S∗) in (2.5) is again called the oracle and (2.5) is called
an oracle inequality. The paper Sun and Zhang [2013] contains (among other
things) similar results as Theorem 2.5.1, although with different constants and
the oracle inequality shown there is not a sharp one.

2.6 A bound for the mean `1-error

It is of interest to have bounds for the mean `1-estimation error IE‖β̂ − β0‖1
(or even for higher moments IE‖β̂ − β0‖m1 with m > 1). Such bounds are will
be important when aiming at proving so-called strong asymptotic unbiased-
ness of certain (de-sparsified) estimators, which in turn is invoked for deriving
asymptotic lower bounds for the variance of such estimators. We refer to

Lemma 2.6.1 Suppose the conditions of Theorem 2.5.1. Let moreover for
some constant φ(L, S) > 0, T be the set

T := {R̂ ≤ R, ‖ε‖n ≥ σ̄, φ̂(L, S) ≥ φ(L, S)}.

Let (for the case of random design)

‖Xβ‖2 := IE‖Xβ‖2n, β ∈ Rp.

Define (as in (2.5))

ηn := min
S∈{1,...,p}

min
β∈Rp

{
‖β − β0‖1 +

‖X(β − β0)‖2

2δσ̄λ0

+
λ̄0|S|σ0

2δφ2(L, S)
+

4λ0(1 + η)‖β−S‖1
2δλ0

}
.
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Define moreover

ζn :=
σ0

λ0
IP1/2(T c) +

2

(
σ̄
√

1 + (η/2)2 − 1

)
+ 1

λ0
IP(T c).

Then
IE‖β̂ − β0‖1 ≤ ηn + ζn.

In an asymptotic formulation and with fixed design (where φ̂(L, S) is fixed), one
can choose R and σ large such that IP(T c) = O(p−τ ) for some τ > 0, but such
that the bound ηn for ‖β̂ − β0‖1 is only effected by this in terms of constants.
For p large the leading term in the bound ηn + ζn for IE‖β̂− β0‖1 is then ηn. In
other words, the bound in probability for ‖β̂ − β0‖1 is of the same order as the
bound in expectation.

To bound IP(T c) for the case of fixed design we refer to Lemma 4.2.2 in Section
4.2. Then, when for examples0 = o(δn

√
n/ log p) (say) the overall conclusion is

IE‖β̂ − β0‖1 = o(δn).

Similar conclusions hold under weak sparsity assumptions.

Proof of Lemma 2.6.1. Let T := {R̂ ≤ R, ‖ε‖n ≥ σ̄, φ̂(L, S) ≥ φ(L, S)}.
Then by Theorem 2.5.1

IE‖β̂ − β0‖1lT ≤ ηn.

Moreover, by the definition of β̂

‖β̂‖1 ≤ ‖ε‖n/λ0 + ‖β0‖1 ≤ ‖ε‖n/λ0 + 2

(
σ̄
√

1 + (η/2)2 − 1

)
/λ0.

It follows that

‖β̂ − β0‖1 ≤
‖ε‖n
λ0

+

2

(
σ̄
√

1 + (η/2)2 − 1

)
+ 1

λ0
.

Therefore

IE‖β̂ − β0‖1lT c ≤
σ0

λ0
IP1/2(T c) +

2

(
σ̄
√

1 + (η/2)2 − 1

)
+ 1

λ0
IP(T c) = ζn.

tu

2.7 Comparison with scaled Lasso

Fix a tuning parameter λ0 > 0. Consider the Lasso with scale parameter σ

β̂(σ) := arg min
β

{
‖Y −Xβ‖2n + 2λ0σ‖β‖1

}
,
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the (scale free) square-root Lasso

β̂] := arg min
β

{
‖Y −Xβ‖n + λ0‖β‖1

}
and the scaled Lasso (Sun and Zhang [2012])

(β̂[, σ̃
2
[ ) := arg min

β,σ

{
‖Y −Xβ‖2n

σ2
+ log σ2 +

2λ0‖β‖1
σ

}
.

Then one easily verifies that

σ̃2
[ = ‖Y −Xβ̂[‖2n + λ0σ̃[‖β̂[‖1

and that β̂[ = β̂(σ̂[). Moreover, if we define

σ̂2
] := ‖Y −Xβ̂]‖2n

we see that β̂] = β̂(σ̂]).

Let us write the residual sum of squares (normalized by n−1) when using σ as
scale parameter as

σ̂2(σ) := ‖Y −Xβ̂(σ)‖2n.
Moreover, write the penalized (and normalized) residual sum of squares plus
penalty when using σ as scale parameter as

σ̃2(σ) := ‖Y −Xβ̂(σ)‖2n + λ0σ‖β̂(σ)‖1.

Let furthermore
σ̃2
] := ‖Y −Xβ̂]‖2n + λ0σ̂]‖β̂]‖1

and
σ̂2
[ := ‖Y −Xβ̂[‖2n.

The scaled Lasso includes the penalty in its estimator σ̃2
[ of the noise variance

σ2
0 := IE‖ε‖2n (assuming the latter exists). The square-root Lasso does not

include the penalty in its estimator σ̂2
] of σ2

0. It obtains σ̂2
] as a stable point of

the equation σ̂2
] = σ̂2(σ̂]) and the scaled Lasso obtains σ̃2

[ as a stable point of

the equation σ̃2
[ = σ̃2(σ̃[). By the mere definition of σ̃2(σ) and σ̂2(σ) we also

have σ̃2
] = σ̃2(σ̂]) and σ̂2

[ = σ̂2(σ̃[).

We end this section with a lemma showing the relation between the penalized
residual sum of squares and the inner product between response and residuals.

Lemma 2.7.1 It holds that

σ̃2(σ) = Y T (Y −Xβ̂(σ))/n.

Proof of Lemma 2.7.1. We have

Y T (Y −Xβ̂(σ))/n = ‖Y −Xβ̂(σ)‖2n + β̂T (σ)XT (Y −Xβ̂(σ))/n

and by the KKT-conditions (see (1.4))

β̂T (σ)XT (Y −Xβ̂(σ))/n = λ0σ‖β̂(σ)‖1.

tu



2.8. THE MULTIVARIATE SQUARE-ROOT LASSO 29

2.8 The multivariate square-root Lasso

For bounds for the bias of the Lasso and also for the construction of confidence
sets we will consider the regression of XJ on X−J (J being some subset of
{1, . . . , p}) invoking a multivariate version of the square-root Lasso. Here, we
use here a standard notation with X being the input and Y being the response.
We will then later replace X by X−J and Y by XJ .

The matrix X is as before an n× p input matrix and the response Y is now an
n× q matrix for some q ≥ 1. For a matrix A we write

‖A‖1 :=
∑
j,k

|Aj,k|

and we denote its nuclear norm by

‖A‖nuclear := trace((ATA)1/2).

We define the multivariate square-root Lasso

B̂ := arg min
B

{
‖Y −XB‖nuclear/

√
n+ λ0‖B‖1

}
(2.6)

with λ0 > 0 again a tuning parameter. The minimization is over all p × q
matrices B. We consider Σ̂ := (Y − XB̂)T (Y − XB̂)/n1 as estimator of the
noise co-variance matrix.

The KKT-conditions for the multivariate square-root Lasso will be a major
ingredient of later results. We present these KKT-conditions in the following
lemma in equation (2.7).

Lemma 2.8.1 We have

(B̂, Σ̂) = arg min
B, Σ>0

{
trace

(
(Y −XB)T (Y −XB)Σ−1/2

)
/n

+trace(Σ1/2) + 2λ0‖B‖1
}

where the minimization is over all symmetric positive definite matrix Σ (this
being denoted by Σ > 0) and where it is assumed that the minimum is indeed
attained at some Σ̂ > 0. The multivariate Lasso satisfies the KKT-conditions

XT (Y −XB̂)Σ̂−1/2/n = λ0Ẑ, (2.7)

where Ẑ is a p×q matrix with ‖Ẑ‖∞ ≤ 1 and with Ẑk,j = sign(B̂k,j) if B̂k,j 6= 0
(k = 1, . . . , p, j = 1, . . . , q).

1In this subsection Σ̂ is not the Gram matrix XTX/n
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Proof of Lemma 2.8.1. Let us write, for a p × q matrix B, the residuals as
ΣB := (Y −XB)T (Y −XB)/n. Let Σmin(B) be the minimizer of

trace(ΣBΣ−1/2) + trace(Σ1/2) (2.8)

over Σ. Then Σmin(B) equals ΣB. To see this we invoke the reparametrization
Ω := Σ−1/2 so that Σ1/2 = Ω−1. We now minimize

trace(ΣBΩ) + trace(Ω−1)

over Ω > 0. The matrix derivative with respect to Ω of trace(ΣBΩ) is ΣB. The
matrix derivative of trace(Ω−1) with respect to Ω is equal to −Ω−2. Hence the
minimizer Ωmin(B) satisfies the equation

ΣB − Ω−2
min(B) = 0,

giving

Ωmin(B) = Σ
−1/2
B .

so that
Σmin(B) = Ω−2

min(B) = ΣB.

Inserting this solution back in (2.8) gives 2trace(Σ
1/2
B ) which is equal to 2‖Y −

XB‖nuclear/
√
n. This proves the first part of the lemma.

Let now for each Σ > 0, BΣ be the minimizer of

trace(ΣBΣ−1/2) + 2λ0‖B‖1.

By sub-differential calculus we have

XT (Y −XBΣ)Σ−1/2/n = λ0ZΣ

where ‖ZΣ‖∞ ≤ 1 and (ZΣ)k,j = sign((BΣ)k,j) if (BΣ)k,j 6= 0 (k = 1, . . . , p,

j = 1, . . . q). The KKT-conditions (2.7) follow from B̂ = BΣ̂. tu



Chapter 3

Structured sparsity

3.1 The Ω-structured sparsity estimator

Like Chapter 1 this chapter studies the linear model with fixed design

Y = Xβ0 + ε

where Y ∈ Rn is an observed response variable, X is a n × p input matrix,
β0 ∈ Rp is a vector of unknown coefficients and ε ∈ Rn is unobservable noise.
The Ω-structured sparsity estimator is

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λΩ(β)

}
,

with Ω a given norm on Rp. The reason for applying some other norm than
the `1-norm depends on the particular application. In this chapter, we have
in mind the situation of a sparsity inducing norm, which means roughly that
it favours solutions β̂ with many zeroes structured in a particular way1. Such
generalizations of the Lasso are examined in Jenatton et al. [2011], Micchelli
et al. [2010], Bach [2010], Bach et al. [2012], Maurer and Pontil [2012], van de
Geer [2014] for example. The norm Ω is constructed in such a way that the
sparsity pattern in β̂ follow a suitable structure.This may for example facilitate
interpretation.

This chapter largely follows Stucky and van de Geer [2015].

The question is now: can we prove oracle inequalities (as given in for example
Theorem 1.7.1) for more general norms Ω than the `1-norm? To answer this
question we first recall the ingredients of the proof Theorem 1.7.1.

- the two point margin

- the two point inequality

1For example the least-squares estimator with so-called nuclear norm penalization is for-
mally also a structured sparsity estimator. This will be considered in Section 6.4. The topic
of this chapter is rather norms which are weakly decomposable as defined in Definition 3.4.1.

31
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- the dual norm inequality

- the (`1-)triangle property

- (`1-)compatibility

- the convex conjugate inequality.

We will also need empirical process theory to bound certain functions of ε. This
will be done in Chapter 4.

The convex conjugate inequality and two point margin have to do with the loss
function and not with the penalty. Since our loss function is still least squares
loss we can use these two ingredients as before. The other ingredients: two
point inequality, dual norm inequality, Ω-triangle property and Ω-compatibility
will be discussed in what follows.

3.2 Dual norms and KKT-conditions for structured
sparsity

The dual norm of Ω. is defined as

Ω∗(w) := max
Ω(β)≤1

|wTβ|, w ∈ Rp.

Therefore the dual norm inequality holds by definition: for any two vectors w
and β

|wTβ| ≤ Ω∗(w)Ω(β).

The sub-differential of Ω is given by

∂Ω(β) =

{
{w ∈ Rp : Ω∗(w) ≤ 1} if β = 0
{w ∈ Rp : Ω∗(w) = 1, wTβ = Ω(β)} if β 6= 0

(Bach et al. [2012], Proposition 1.2). It follows that the Ω-structured sparsity
estimator β̂ satisfies

Ω∗(X
T (Y −Xβ̂))/n ≤ λ,

and if β̂ 6= 0,

Ω∗(X
T (Y −Xβ̂))/n = λ, β̂TXT (Y −Xβ̂)/n = Ω(β̂).

The KKT-conditions are

XT (Y −Xβ̂)/n = λẑ,

where Ω∗(ẑ) ≤ 1 and ẑT β̂ = Ω(β̂).
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3.3 Two point inequality

We call the result (3.1) below in Lemma 3.3.1 a two point inequality. See also
Lemma 5.2.1 which treats more general loss functions.

Lemma 3.3.1 Let β̂ be the estimator

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2pen(β)

}
,

where pen : Rp → R is a convex penalty. Then for any β ∈ Rp

(β − β̂)TXT (Y −Xβ̂)/n ≤ pen(β)− pen(β̂) (3.1)

Proof of Lemma 3.3.1. Fix β ∈ Rp and define for 0 < t ≤ 1,

β̂t := (1− t)β̂ + tβ.

We have
‖Y −Xβ̂‖2n + 2pen(β̂) ≤ ‖Y −Xβ̂t‖2n + 2pen(β̂t)

≤ ‖Y −Xβ̂t‖2n + 2(1− t)pen(β̂) + 2tpen(β)

where we used the convexity of the penalty. It follows that

‖Y −Xβ̂‖2n − ‖Y −Xβ̂t‖2n
t

+ 2pen(β̂) ≤ 2pen(β).

But clearly

lim
t↓0

‖Y −Xβ̂‖2n − ‖Y −Xβ̂t‖2n
t

= 2(Y −Xβ̂)TX(β − β̂)/n.

tu

Note that the two point inequality (3.1) can be written in the form

(β̂ − β)T Σ̂(β̂ − β0) ≤ εTX(β̂ − β)/n+ pen(β)− pen(β̂).

For the case pen = λΩ an alternative proof can be formulated from the KKT-
conditions.

3.4 Weak decomposability and Ω-triangle property

What we need is a more general version of the `1-triangle property: the Ω-
triangle property

Ω(β)− Ω(β′) ≤ Ω(β′S − βS) + Ω(β−S)− Ω−S(β′−S), ∀ β, β′.

Here Ω−S is a norm defined on Rp−|S|. This property holds if S is a allowed set
which is defined as follows



34 CHAPTER 3. STRUCTURED SPARSITY

Definition 3.4.1 The set S is called (Ω-)allowed if for a norm Ω−S on Rp−|S|
it holds that

Ω(β) ≥ Ω(βS) + Ω−S(β−S), ∀ β ∈ Rp. (3.2)

We call Ω weakly decomposable for the set S.

Clearly for the `1-norm ‖ · ‖1 any subset S is allowed, Ω−S is again the `1-norm
and one has in fact equality: ‖β‖1 = ‖βS‖1 + ‖β−S‖1. More examples are in
Section 3.9 and Subsection 3.10.2. Observe also that by the triangle inequality

Ω(β) ≤ Ω(βS) + Ω(β−S),∀ β ∈ Rp.

For allowed sets, one thus in a sense also has the reverse inequality, albeit that
Ω(β−S) is now replaced by some other norm.

We introduce some further notation. If Ω and Ω are two norms on Euclidean
space, say Rp, we write

Ω ≥ Ω ⇔ Ω(β) ≥ Ω(β) ∀ β ∈ Rp

and then say that Ω is a stronger norm than Ω. Note that

Ω ≥ Ω ⇒ Ω∗ ≤ Ω∗.

For an allowed set S, write (3.2) shorthand as

Ω ≥ Ω(·|S) + Ω−S

where for any set J and β ∈ Rp, the notation Ω(β|J) = Ω(βJ) is used. Define
Ω−S as the largest norm among the norms Ω−S for which

Ω ≥ Ω(·|S) + Ω−S .

If Ω−S = Ω(·| − S) we call Ω decomposable for the set S.

Let us compare the various norms.

Lemma 3.4.1 Let S be an allowed set so that

Ω ≥ Ω(·|S) + Ω−S =: Ω.

Then
Ω∗ ≤ Ω∗ = max{Ω∗(·|S),Ω−S∗ }

and
Ω−S ≤ Ω(·| − S), Ω−S∗ ≥ Ω∗(·| − S).

We see that the original norm Ω is stronger than the decomposed version Ω =
Ω(·|S) + Ω−S . As we will experience this means we will loose a certain amount
of this strength by replacing Ω by Ω at places.

Proof of Lemma 3.4.1. We first prove Ω∗ ≤ max{Ω∗(·|S),Ω−S∗ }. Clearly

Ω∗(wS) = Ω∗(wS) = max{Ω∗(wS),Ω−S∗ (0)}
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and

Ω∗(w−S) = Ω−S∗ (w−S) = max{Ω∗(0),Ω−S∗ (w−S)}.

So it suffices to consider vectors w with both wS 6= 0 and w−S 6= 0. By the
definition of the dual norm Ω∗

Ω∗(w) = max
Ω(β)≤1

wTβ

= max
Ω(βS)+Ω−S(β−S)≤1

{
wTSβS
Ω(βS)

Ω(βS) +
wT−Sβ−S

Ω−S(β−S)
Ω−S(β−S)

}
≤ max

Ω(βS)+Ω−S(β−S)≤1

{
Ω∗(wS)Ω(βS) + Ω−S∗ (w−S)Ω−S(β−S)

}
≤ max{Ω∗(wS),Ω−S∗ (w−S)}.

The reverse inequality Ω∗ ≥ max{Ω∗(·|S),Ω−S∗ }. follows from

Ω∗(w) = max
Ω(β)≤1

wTβ ≥ max
Ω(β)≤1, β−S=0

wTβ = Ω∗(wS)

and similarly Ω(w) ≥ Ω−S∗ (w−S).

For the second result of the lemma, we use the triangle inequality

Ω ≤ Ω(·|S) + Ω(·| − S)

Since S is assumed to be allowed we also have

Ω ≥ Ω(·|S) + Ω−S .

So it must hold that Ω−S ≤ Ω(·| − S). Hence also Ω−S∗ ≥ Ω(·| − S). tu

3.5 Ω-compatibility

As for the Lasso the results will depend on compatibility constants, which in
the present setup are defined as follows.

Definition 3.5.1 (van de Geer [2014]) Suppose S is an allowed set. Let L > 0
be some stretching factor. The Ω-compatibility constant (for S) is

φ̂2
Ω(L, S) := min

{
|S|‖XβS −Xβ−S‖2n : Ω(βS) = 1, Ω−S(β−S) ≤ L

}
.

A comparison of this definition with the compatibility condition for the Lasso
(Definition 1.6.1 in Section 1.6) we merely see that the `1-norm is replaced by
a more general norm. The geometric interpretation is however less evident. On
top of that the various Ω-compatibility constants do not allow a clear order-
ing, i.e., generally one cannot say that one norm gives smaller compatibility
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constants than another. Suppose for example that both Ω(·|S) and Ω−S are
stronger than `1 (see Section 3.7 for this terminology). Then clearly

(i) :=

{
β : Ω(βS) = 1, Ω−S(β−S)‖1 ≤ L

}
⊂
{
β : ‖βS‖1 ≤ 1, ‖β−S ≤ L

}
=: (ii).

But the latter set (ii) is not a subset of

(iii) :=

{
β : ‖βS‖1 = 1, ‖β−S ≤ L

}
.

Hence we cannot say whether the minimum over the first set (i) is larger (or
smaller) than the minimum over the third set (iii).

3.6 A sharp oracle inequality with structured spar-
sity

Let Ω be a norm on Rp. We have in mind a sparsity inducing norm for which
the collection of allowed sets (see Definition 3.4.1) does not only consist of
the trivial sets ∅ and Rp. Recall that the Ω-structured sparsity estimator β̂ is
defined as

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λΩ(β)

}
.

Theorem 3.6.1 Consider an allowed set S. Let λS and λ−S be constants such
that

λS ≥ Ω∗(X
T
S ε)/n, λ

−S ≥ Ω−S∗ (XT
−Sε)/n.

Let δ1 ≥ 0 and 0 ≤ δ2 < 1 be arbitrary. Take λ > λ−S and define

λ := λ− λ−S , λ̄ := λ+ λS + δ1λ

and

L :=
λ̄

(1− δ2)λ
.

Then for any β it holds that

2δ1λΩ(β̂S − βS) + 2δ2λΩ−S(β̂−S − β−S) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2
Ω(L, S)

+ 4λΩ(β−S).

Theorem 3.6.1 is a special case of Theorem 5.5.1 in Section 5.5. We do however
provide a direct proof in Subsection 3.10.3. The direct proof moreover facilitates
the verification of the claims made in Proposition 3.8.1 which treats the case of
square-root loss with sparsity inducing norms.

One may minimize the result of Theorem 3.6.1 over all candidate oracles (β, S)
with β a vector in Rp and S an allowed set S. This then gives oracle values
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(β∗, S∗). Theorem 3.6.1 is a generalization of Theorem 1.8.1 in Section 1.8.
As there, with the choice δ1 = δ2 = 0 it has no result for the Ω(|S) or Ω−S

estimation error. If we take these values strictly positive say δ1 = δ1 = δ > 0
one obtains the following corollary.

Corollary 3.6.1 Let S be an Ω-allowed set and define

Ω = Ω(·|S) + Ω−S .

Then, using the notation of Theorem 3.6.1 with δ1 = δ2 := δ, we have for any
β

2δλ Ω(β̂−β0) ≤ 2δλ Ω(β−β0) +‖X(β−β0)‖2n+
λ̄2|S|

φ̂2
Ω(L, S)

+ 4λΩ(β−S). (3.3)

Remark 3.6.1 The good news is that the oracle inequalities thus hold for gen-
eral norms. The bad news is that by the definition of an allowed set S

Ω ≥ Ω,

where

Ω := Ω(·|S) + Ω−S .

Hence in general the bounds for Ω-estimation error (as given in Corollary 3.6.1)
do not imply bounds for the Ω-estimation error of β̂. As an illustration, we see
in Example 3.9.2 ahead (Section 3.9) that Ω−S can be very small when |S| is
large. Lemma 3.4.1 moreover shows that Ω−S∗ ≥ Ω∗(·| − S), leading by the
condition λ > Ω−S∗ (XT

−Sε)/n to a perhaps large tuning parameter.

3.7 Norms stronger than `1

We say that the norm Ω is stronger than Ω if Ω ≥ Ω. For such two norms
the dual norm of Ω is weaker: Ω∗ ≤ Ω∗. Thus, when Ω is stronger than the
`1-norm ‖ · ‖1, Theorem 3.6.1 gives stronger results than Theorem 1.8.1 and its
bounds on the tuning parameter λ are weaker. (This is modulo the behaviour of
the compatibility constants: φ̂2 and φ̂2

Ω are generally not directly comparable.)
Section 3.9 considers a general class of norms that are stronger than the `1-
norm.

With norms stronger than `1 one can apply the “conservative” `1-based choice
of the tuning parameter. This is important for the following reason. In view
of Corollary 3.6.1, one would like to choose S in (3.3) in an optimal “oracle”
way trading off the terms involved. But such a choice depends on the unknown
β0. Hence we need to prove a bound for Ω−S∗ (XT

−Sε)/n which holds for all S
which are allowed and which we want to include in our collection of candidate
oracles. If the norm is stronger than the `1-norm a value λ > λε with λε at
least ‖XT ε‖∞/n works. This “conservative” choice is of course a bit too severe
overruling of the noise and in that sense not optimal. There may be cases
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where one still can use smaller values. Perhaps by using cross-validation one
can escape from this dilemma. On the other hand, it is clear that the only
gain when using some “optimal” tuning parameter is in the logarithmic terms
and constants. Chapter 4 further examines the situation for a general class of
norms (see in particular Corollaries 6.2.2 and 6.2.3 in Section 6.2).

3.8 Structured sparsity and square-root loss

Let Ω be a norm on Rp. The topic of this section is the square-root Ω-structured
sparsity estimator

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖n + λ0Ω(β)

}
.

Let the residuals be

ε̂ := Y −Xβ̂.

The motivation for studying square-root quadratic loss is as before: it allows
one to have a tuning parameter that does not depend on the scale of the noise.
This motivation as perhaps less strong though, as we have seen in the previous
sections (see also the discussion in Section 3.7) that the “good” (i.e.minimal yet
effective) choice for the tuning parameter is more subtle as it may depend on the
oracle. On the other hand, for certain examples (for instance the group-Lasso
example (Example 3.9.1 in the next section) this is not an issue and square-root
quadratic loss gives a universal choice and not overly conservative choice for the
tuning parameter.

The idea in this section is as in Chapter 2 to first present an oracle inequality
under the assumption that ε̂ 6= 0, i.e, no overfitting. This is done in Subsection
3.8.1. Then Subsection 3.8.2 shows that indeed ε̂ 6= 0 with high probability.
Finally Subsection 3.8.3 combines the results. The arguments are throughout
completely parallel to those for the square-root Lasso as presented in Chapter
2.

3.8.1 Assuming there is no overfitting

In this subsection we assume ε̂ 6= 0. In the next section we show this is the case
with high probability if β0 is Ω-sparse.

We define

R̂ :=
Ω∗(X

T ε)

n‖ε‖n
.

Moreover, for allowed sets S we define

R̂S :=
Ω∗(X

T
S ε)

n‖ε‖n
, R̂−S :=

Ω−S∗ (XT
−Sε)

n‖ε‖n
.
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Proposition 3.8.1 Suppose ‖ε̂‖n > 0. Consider an allowed set S. Let

RS ≥ R̂S , R−S ≥ R̂−S ,

Let δ1 ≥ 0 and 0 ≤ δ2 < 1 be arbitrary. Take λ0‖ε̂‖n > R−S‖ε‖n and define
λ̂L‖ε‖n := λ0‖ε̂‖n −R−S‖ε‖n, λ̂U‖ε‖n := λ0‖ε̂‖n +RS‖ε‖n + δ1λ̂L‖ε‖n and

L̂ :=
λ̂U

(1− δ2)λ̂L

.

Then for any β we have

2δ1λ̂L‖ε‖nΩ(β̂S − β) + 2δ2λ̂L‖ε‖nΩ−S(β̂−S) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̂2

U‖ε‖2n|S|
φ̂2

Ω(L̂, S)
+ 4λ0‖ε̂‖nΩ(β−S).

Proof of Proposition 3.8.1. This follows by the same arguments as for
Theorem 3.6.1 (see Subsection 3.10.3 ) and using the two point inequality (??).
tu

3.8.2 Showing there is no overfitting

Conditions that ensure that ε̂ 6= 0, and in fact ‖ε̂‖n is close to ‖ε‖n, are of the
same flavour as for the square-root Lasso in Lemma 2.4.1.

Lemma 3.8.1 Suppose that for some 0 < η < 1, some R > 0 and some σ > 0,
we have

λ0(1− η) ≥ R

and

λ0Ω(β0)/σ ≤ 2

(√
1 + (η/2)2 − 1

)
. (3.4)

Then on the set where R̂ ≤ R and ‖ε‖n ≥ σ we have

∣∣∣∣‖ε̂‖n/‖ε‖n − 1

∣∣∣∣ ≤ η.

Proof of Lemma 3.8.1. This follows by exactly the same arguments as those
used for Lemma 2.4.1. tu

3.8.3 A sharp oracle inequality

Putting the previous two subsections together yields the following oracle result.

Theorem 3.8.1 Let S be an allowed set. Let for some positive constants R,
RS, R−S, 0 < η < 1 and σ, the Ω-sparsity (3.4) hold, and

RS ≥ R̂S , R−S ≥ R̂−S ,

R ≥ R̂, ‖ε‖n ≥ σ
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and

λ0(1− η) ≥ max{R,R−S}

Define

λ0 := λ0(1− η)−R−S , λ̄0 := λ0(1 + η)RS + δ1λ0

and

L :=
λ̄0

(1− δ2)λ0

.

Then for any β we have

2δ1λ0‖ε‖nΩ(β̂S − β) + 2λ0‖ε‖nΩ2(β̂−S) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2

0‖ε‖2n|S|
φ̂2

Ω(L, S)
+ 4λ0(1 + η)‖ε‖nΩ(β−S).

Proof of Theorem 3.8.1. This follows from Proposition 3.8.1 combined with
Lemma 3.8.1. tu

3.9 Norms generated from cones

This section introduces a general class of norms for which the weak decom-
posability property, as presented in Defintion 3.4.1, holds. The corresponding
allowed sets are the sets which one believes to be candidate active sets.

Let A be a convex cone in Rp+ =: [0,∞)p. This cone is given beforehand and
will describe the sparsity structure one believes is (approximately) valid for the
underlying target β0.

Definition 3.9.1 The norm Ω generated by the convex cone A is

Ω(β) := min
a∈A

1

2

p∑
j=1

[
|βj |2

aj
+ aj

]
, β ∈ Rp.

Here we use the convention 0/0 = 0. If βj 6= 0 one is forced to take aj 6= 0 in
the above minimum. It is shown in Micchelli et al. [2010] that Ω is indeed a
norm. We present a proof for completeness.

Lemma 3.9.1 The function Ω defined in Definition 3.9.1 above is a norm.

Proof of Lemma 3.9.1. It is clear that Ω(β) ≥ 0 for all β and that it can
only be zero when β ≡ 0. It is also immediate that the scaling property

Ω(λβ) = λΩ(β), ∀ λ > 0, β ∈ Rp,

holds, where we use that A is a cone. The function β 7→ Ω(β) is convex because
(a, b) 7→ b2/a and a 7→ a are convex functions and A is convex. The triangle
inequality follows from this and from the scaling property. tu
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We call Ω the norm generated by the cone A. One may verify that penalty
proportional to the norm Ω generated by the convex cone A favours sparse
vectors which lie in A. It is easy to see that the `1-norm is a special case with
A = Rp+.

Having sparsity in mind, a minimal requirement seems to be that when coordi-
nates are put to zero this does not increase the norm. This is indeed the case
for a norm generated by a cone, as the following lemma shows.

Lemma 3.9.2 For J ⊂ J̄ we have

Ω(·|J) ≤ Ω(·|J̄), Ω∗(·|J) ≥ Ω∗(·|J̄).

Proof of Lemma 3.9.2. Let β ∈ Rp be arbitrary. For all a ∈ A

1

2

∑
j∈J

[
β2
j

aj
+ aj

]
≤ 1

2

p∑
j=1

[
β2
j

aj
+ aj

]
.

Hence also

min
a∈A

1

2

∑
j∈J

[
β2
j

aj
+ aj

]
≤ min

a∈A

1

2

p∑
j=1

[
β2
j

aj
+ aj

]
.

tu

The rest of this section is organized as follows. First in Lemma 3.9.3 an alter-
native representation of the norm Ω generated by a cone is presented, and also
the dual norm. Then Lemma 3.9.4 shows which sets S are allowed and the cor-
responding weak decomposablity into Ω(·|S) and Ω−S . Then in Lemma 3.9.5 a
bound for Ω(·| − J) in terms of Ω−J is given, for general sets J and hence in
particular for allowed sets J = S. Lemma 3.9.6 states that Ω := Ω(·|J) + Ω−J

is stronger than the `1-norm. We end the section with some examples.

Lemma 3.9.3 We have

Ω(β) = min
a∈A, ‖a‖1=1

√√√√ p∑
j=1

β2
j

aj
= min

a∈A, ‖a‖1≤1

√√√√ p∑
j=1

β2
j

aj
(3.5)

and

Ω∗(w) = max
a∈A, ‖a‖1=1

√√√√ p∑
j=1

ajw2
j = max

a∈A, ‖a‖1≤1

√√√√ p∑
j=1

ajw2
j . (3.6)

Proof. Exercise. tu

For J ⊂ {1, . . . , p} we set

AJ = {aJ : a ∈ A}.

Note that AJ is a convex cone in R|J |+ (whenever A is one in Rp+). Denote the

norm on R|J | generated by AJ as

ΩJ(βJ) := min
aJ∈AJ

1

2

∑
j∈J

[
|βj |2

aj
+ aj

]
, β ∈ Rp.
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Recall that a set S is called allowed if Ω is weakly decomposable for the set S.

Lemma 3.9.4 If AS considered as subset of Rp is a subset of A we have the
weak decomposability

Ω ≥ Ω(|S) + Ω−S

so that S is allowed.

Proof. Observe first that AS ⊂ A implies Ω(βS) = ΩS(βS). Moreover

Ω(β) ≥ min
a∈A

1

2

∑
j∈S

[
β2
j

aj
+ aj

]
+ min

a∈A

1

2

∑
j /∈S

[
β2
j

aj
+ aj

]

≥ min
aS∈AS

1

2

∑
j∈S

[
β2
j

aj
+ aj

]
+ min
a−S∈A−S

1

2

∑
j /∈S

[
β2
j

aj
+ aj

]
= ΩS(βS) + Ω−S(β−S).

tu

Lemma 3.4.1 pointed out that in the case of an allowed set the Ω−S-norm may
be quite small. We now examine this for the special case of a norm generated
by a cone.

Lemma 3.9.5 Let E−J be the extreme points of the Ω−J -unit ball. Then

Ω(·| − J) ≤ ω−JΩ−J

where ω−J = max{Ω(e−J | − J) : e−J ∈ E−J}.

Proof. Define ω := max{Ω(β−J | − J) : Ω−J(β−J) = 1}. The maximum is
attained in the extreme points of the Ω−J -unit ball. tu

Recall the bad news in Remark 3.6.1 that the oracle results of Theorem 3.6.1 and
its relatives in general do not imply bounds for the Ω-estimation error. However,
there is some good news too: they do imply bounds for the `1-estimation error.
This is clear from the next lemma.

Lemma 3.9.6 For any set J ,

‖ · ‖1 ≤ min{Ω(·|J),ΩJ}.

Proof of Lemma 3.9.6. We clearly have

Ω(β) = min
a∈A

1

2

p∑
j=1

[
|βj |2

aj
+ aj

]
≥ min

a∈Rp+

1

2

p∑
j=1

[
|βj |2

aj
+ aj

]
.

But for each j the minimum of

1

2

p∑
j=1

[
|βj |2

aj
+ aj

]
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over aj ≥ 0 is equal to |βj |. We apply this argument with Ω respectively
replaced by Ω(·|J) and ΩJ . tu

We give four examples from Micchelli et al. [2010].

Example 3.9.1 (Group Lasso penalty) Let {Gj}mj=1 be a partition of {1, . . . , p}
into m groups. The set A consists of all non-negative vectors which are constant
within groups. This gives

Ω(β) :=
m∑
j=1

√
|Gj |‖βGj‖2.

With squared error loss a penalty proportional to this choice of Ω is called the
Group Lasso. It is introduced in Yuan and Lin [2006]. Oracle inequalities for
the group Lasso have been derived in Lounici et al. [2011] for example. For the
square-root version we refer to Bunea et al. [2014]. The dual norm is

Ω∗(w) = max
1≤j≤m

‖wGj‖2/
√
|Gj |.

Any union of groups is an allowed set and we moreover have for any allowed
set S

Ω−S = Ω(·| − S)

and

Ω = Ω(·|S) + Ω−S .

In other words, this norm is decomposable which frees it from the concerns
expressed in Remark 3.6.1.

Example 3.9.2 (Wedge penalty) Consider the norm corresponding to the
wedge penalty:

A := {a1 ≥ a2 ≥ · · ·}.

Let for some s ∈ N, the set S := {1, . . . , s} be the first s indices. Then S is an
allowed set. To see that Ω−S can be much smaller than Ω(·|−S), take the vector
β ∈ Rp to be one in its s + 1-th entry and zero elsewhere. Then Ω−S(β) = 1
but Ω(β| − S) =

√
s+ 1.

Example 3.9.3 (DAG penalty) Let A = {Aa ≥ 0} where A is the incidence
matrix of a directed acyclic graph (DAG) with nodes {1, . . . , p}. Then removing
orphans is allowed, i.e., successively removing nodes with only outgoing edges
the remaining set is allowed at each stage.

Example 3.9.4 (Convexity inducing penalty) Let A := {ak+2 − 2ak−1 +
ak ≥ 0}.
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3.10 Complements

3.10.1 The case where some coefficients are not penalized

Suppose the coefficients with index set U ⊂ {1, . . . , p} are not penalized. The
Ω-structured sparsity estimator is then

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖2n + 2λΩ(β| − U)

}
where Ω(β| − U) := Ω(β−U ), β ∈ Rp. We need the following result.

Lemma 3.10.1 Suppose that Ω(·| − U) ≤ Ω. Then for all z−U ∈ Rp

Ω∗(z−U | − U) = Ω∗(z−U ).

Proof. By the definition of Ω∗

Ω∗(z−U ) = max
Ω(β)≤1

βT z−U .

Hence

Ω∗(z−U ) ≥ max
Ω(β)≤1, β=β−U

βT z−U = max
Ω(β−U )≤1

βT−Uz−U = Ω∗(z−U | − U).

On the other hand, the condition Ω(·| − U) ≤ Ω implies

Ω(β) ≤ 1⇒ Ω(β−U ) ≤ 1

and therefore

Ω∗(z−U ) ≤ max
Ω(β−U )≤1

βT−Uz−U = Ω∗(z−U | − U).

tu

When Ω(·| − U) ≤ Ω the KKT-conditions are

XT (Y −Xβ̂)/n+ λẑ−U = 0,Ω∗(ẑ−U ) ≤ 1, ẑ−U β̂−U = Ω(β̂−U ).

3.10.2 The sorted `1-norm

Let λ1 ≥ λ2 ≥ · · · ≥ λp be a given increasing sequence. For β = (β1, . . . , βp)
T ∈

Rp we define the vector of absolute values in increasing order |β|(1) ≥ |β|(2) ≥
· · · ≥ |β|(p). The sorted `1-norm is

Ω(β) =

p∑
j=1

λj |β|(j).

It was introduced in Bogdan et al. [2013]. In Zeng and Mario [2014] it is shown
that this is indeed a norm and they provide its dual norm. We now show that
this norm is weakly decomposable.
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Lemma 3.10.2 Let

Ω(β) =

p∑
j=1

λj |β|(j),

and

Ω−S(β−S) =
r∑
l=1

λp−r+l|β|(l,−S),

where r = p − s and |β|(1,−S) ≥ · · · ≥ |β|(r,−S) is the ordered sequence in β−S.

Then Ω(β) ≥ Ω(βS) + Ω−S(β−S). Moreover Ω−S is the strongest norm among
all Ω−S for which Ω(β) ≥ Ω(βS) + Ω−S(β−S)

Proof of Lemma 3.10.2 . Without loss of generality assume β1 ≥ · · · ≥ βp ≥
0. We have

Ω(βS) + Ω−S(β−S) =

p∑
j=1

λjβπ(j)

for a suitable permutation π. It follows that (Problem ??)

Ω(βS) + Ω−S(β−S) ≤ Ω(β).

To show Ω−S is the strongest norm it is clear we need only to search among
candidates of the form

Ω−S(β−S) =
r∑
l=1

λp−r+lβπ−S(l)

where {λp−r+l} is a decreasing positive sequence and where π−S(1), . . . , π−S(r)
is a permutation of indices in Sc. This is then maximized by ordering the indices
in Sc in decreasing order. But then it follows that the largest norm is obtained
by taking λp−r+l = λp−r+l for all l = 1, . . . , r. tu

3.10.3 A direct proof of Theorem 3.6.1

In stead of checking the conditions of the more general Theorem 5.5.1 we give
here a direct proof. This also helps to follow the assertion of Proposition 3.8.1.
We simplify the notation somewhat by writing Ω2 := Ω−S , λ1 := λS and
λ2 := λ−S .
• If

δ1λΩ(β̂S − βS) + δ2λΩ2(β̂−S − β−S) + (β̂ − β)T Σ̂(β̂ − β0) ≤ 2λΩ(β−S)

we know from the two point margin that

2δ1λΩ(β̂S − βS) + 2δ2λΩ2(β̂−S − β−S) + ‖X(β̂ − β0)‖2n
≤ ‖X(β − β0)‖2n + 4λΩ(β−S).

• Suppose now that

δ1λΩ(β̂S − βS) + δ2λΩ2(β̂−S − β−S) + (β̂ − β)T Σ̂(β̂ − β0) ≥ 2λΩ(β−S). (3.7)
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By Lemma 3.3.1

(β̂− β )T Σ̂(β̂ − β0) ≤ (β̂ − β)TXT ε/n+ λΩ(β)− λΩ(β̂)

≤ λ1Ω(β̂S − βS) + λ2Ω2(β̂−S) + (λ+ λ2)Ω(β−S) + λΩ(βS)− λΩ(β̂)

≤ (λ+ λ1)Ω(β̂S − βS)− λΩ2(β̂−S − β−S) + 2λΩ(β−S).

We summarize this and give the inequality a number for reference:

(β̂−β)T Σ̂(β̂−β0) ≤ (λ+λ1)Ω(β̂S−βS)−λΩ2(β̂−S−β−S) + 2λΩ(β−S). (3.8)

From (3.7) we see that

(1− δ2)λΩ2(β̂−S − β−S) ≤ λ̄Ω(β̂S − βS)

or
Ω2(β̂−S − β−S) ≤ LΩ(β̂S − βS).

It follows that

Ω(β̂S − βS) ≤
√
|S|‖X(β̂ − β)‖n/φ̂Ω(L, S).

But then, inserting (3.8),

(β̂ − β)T Σ̂( β̂ −β0) + δ1λΩ(β̂S − βS) + δ2λΩ2(β̂−S − β−S)

≤ λ̄Ω(β̂S − βS) + 2λΩ(β−S)

≤ λ̄
√
|S|‖X(β̂ − β)‖n/φ̂Ω(L, S) + 2λΩ(β−S)

≤ 1

2

λ̄2|S|
φ̂2

Ω(L, S)
+

1

2
‖X(β̂ − β)‖2n + 2λΩ(β−S).

By the two point margin this gives

‖X(β̂ − β0)‖2n + 2δ1λΩ(β̂S − βS) + 2δ2λΩ2(β̂−S − β−S)

≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2(L, S)
+ 4λΩ(β−S).

tu



Chapter 4

Empirical process theory for
dual norms

4.1 Introduction

Consider a vector ε ∈ Rn with independent entries mean zero and variance σ2
0.

We let X be a given n×p matrix. We are interested in the behaviour of Ω∗(X
T ε)

where Ω∗ is the dual norm of Ω. Note thatXT ε is a p-dimensional random vector
with components XT

j ε where Xj is the j-th column of X (j = 1, . . . , p). For each

j the random variable Wj := XT
j ε/n is an average of n independent random

variables with mean zero and variance σ2
0‖Xj‖2n/n. Under suitable conditions,

Wj has “Gaussian-type” behaviour. In this chapter, we assume for simplicity
throughout that ε is Gaussian:

Condition 4.1.1 The vector ε ∈ Rn has a Nn(0, σ2
0)-distribution.

Then XT
j ε is Gaussian as well and derivations are then simpler than for more

general distributions. Although, the Gaussianity assumption is not crucial for
the general picture, it does make a difference.

4.2 The dual norm of `1 and the scaled version

The dual norm of ‖ · ‖1 is ‖ · ‖∞. We will derive the following corollary.

Corollary 4.2.1 Let ε ∼ Nn(0, σ2
0I) and let X be a fixed n × p matrix with

diag(XTX)/n = I. Let 0 < α < 1 be a given error level. Then for

λε := σ0

√
2 log(2p/α)

n
,

we have

IP

(
‖XT ε‖∞/n ≥ λε

)
≤ α.

47
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The scaled version is

R̂ :=
‖XT ε‖∞/n
‖ε‖n

.

We first present a probability inequality for the angle between a fixed and a
random vector on the sphere in Rn.

Lemma 4.2.1 Let ε ∼ Nn(0, σ2
0) where n ≥ 2. Then for any u ∈ Rn with

‖u‖n = 1 and for all 0 < t < (n− 1)/2 we have

IP

(
|uT ε|
n‖ε‖n

>

√
2t

n− 1

)
≤ 2 exp[−t].

Proof of Lemma 4.2.1. Without loss of generality we may assume σ0 = 1.
Because ε/‖ε‖n is uniformly distributed on the sphere with radius

√
n in Rn,

we may without loss of generality assume that u =
√
ne1, the first unit vector

scaled with
√
n. Then uT ε/(n‖ε‖n) = ε1/(

√
n‖ε‖n) = ε1/

√∑n
i=1 ε

2
i . It follows

that for 0 < t < n/2

IP

(
|uT ε|
n‖ε‖n

≥
√

2t/n

)
= IP

(
ε21 ≥

2t

n

n∑
i=1

ε2i

)

= IP

((
1− 2t

n

)
ε21 ≥

2t

n

n∑
i=2

ε2i

)
= IP

(
ε21 ≥

(
2t

n− 2t

) n∑
i=2

ε2i

)
.

The random variable Z :=
∑n

i=2 ε
2
i has a χ2-distribution with n− 1 degrees of

freedom. It follows that for v > 0

IEe−vZ/2 =

(
1

1 + v

)n−1
2

.

We moreover have that for all a > 0,

IP(ε21 ≥ 2a) ≤ 2 exp[−a].

So we find, with fZ being the density of Z

IP

(
ε21 ≥

(
2t

n− 2t

) n∑
i=2

ε2i

)
=

∫ ∞
0

IP

(
ε21 >

(
2tz

n− 2t

))
fZ(z)dz

= 2

∫ ∞
0

exp

[
− tz

n− 2t

]
fZ(z)dz

= 2

(
1

1 + 2t
n−2t

)n−1
2

= 2

(
n− 2t

n

)n−1
2

≤ 2 exp

[
−t
(
n− 1

n

)]
.

Finalize the proof by replacing t by tn/(n− 1). tu
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Lemma 4.2.2 Let ε ∼ Nn(0, σ2
0I) and let X be a fixed n × p matrix with

diag(XTX)/n = I. Let α, α and ᾱ be given positive error levels. Define

σ2 := σ2
0

(
1− 2

√
log(1/α)

n

)
,

σ̄2 := σ2
0

(
1 + 2

√
log(1/ᾱ)

n
+

2 log(1/ᾱ)

n

)
and

R :=

√
2 log(2p/α)

n− 1
.

We have

IP(‖ε‖n ≤ σ) ≤ α, IP(‖ε‖n ≥ σ̄) ≤ ᾱ

and

IP(R̂ ≥ R) ≤ α.

Proof of Lemma 4.2.2. Without loss of generality we can assume σ2
0 = 1.

From Laurent and Massart [2000] we know that for all t > 0

IP

(
‖ε‖2n ≤ 1− 2

√
t/n

)
≤ exp[−t]

and

IP

(
‖ε‖2n ≥ 1 + 2

√
t/n+ 2t/n

)
≤ exp[−t].

A proof of the latter can also be found in Lemma 4.6.1

Apply this with t = log(1/α) and t = log(1/ᾱ) respectively. The bound for R̂
follows from Lemma 4.2.1 and the union bound. tu

4.3 Dual norms generated from cones

In Maurer and Pontil [2012] one can find first moment inequalities for a general
class of dual norms. Here, we consider only a special case and we establish
probability inequalities directly (i.e. not via concentration inequalities).

Let Ω be the norm generated by a given convex cone A:

Ω(β) := min
a∈A

1

2

p∑
j=1

[
β2
j

aj
+ aj

]
, β ∈ Rp.

(see Section 3.9). Lemma 3.9.3 expresses the dual norm as

Ω∗(w) = max
a∈A, ‖a‖1=1

√√√√ p∑
j=1

ajw2
j , w ∈ Rp.
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Aim of the rest of this chapter is to bound Ω∗(W ), with W1, . . . ,Wp random
variables (in our setup, Wj = XT

j ε/n, j = 1, . . . , p). Recall that in order to
simplify the exposition its is assumed that these are Gaussian random variables.
The results can be extended to sub-Gaussian ones.

It is easy to see that Ω ≥ ‖ · ‖1 and hence we have Ω∗ ≤ ‖ · ‖∞. However, in
some instances this bound can be improved. This is for example the case for
the group Lasso, as we show below.

4.4 A generalized Bernstein inequality

In this section it is shown that under a condition on the moment generating
function of a non-negative random variable Z one has a Bernstein-like inequality
involving a sub-Gaussian part and a sub-exponential part. We apply this in the
next section to squared Gaussians.

The following result can be deduced from in [Birgé and Massart [1998], Lemma
8 and its proof] or [Bühlmann and van de Geer [2011], Lemma 14.9 and its
proof].

Lemma 4.4.1 Let Z ∈ R be a random variable that satisfies for some K and
c and for all L > K

IE exp[Z/L] ≤ exp

[
c

(L2 − LK)

]
.

Then for all t > 0

IP
(
Z ≥ 2

√
tc+Kt

)
≤ exp [−t] .

Proof of Lemma 4.4.1. Let a > 0 be arbitrary and take

K/L = 1− (1 + aK/c)−1/2,

apply Chebyshev’s inequality to obtain

IP (Z ≥ a) ≤ exp

[
− a2

aK + 2c+ 2
√
acK + c2

]
.

Now, choose a = Kt+ 2
√
tc to get

IP
(
Z ≥ 2

√
tc+Kt

)
≤ exp [−t] .

tu

Lemma 4.4.2 Let Z ∈ R be a random variable that satisfies for a constant L0

C2
0 := IE exp[|Z|/L0] <∞.

Then for L > 2L0

IE exp[(Z − IEZ)/L] ≤ exp

[
2L2

0C
2
0

L2 − 2LL0

]
.
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Proof of Lemma 4.4.2. We have for m ∈ {1, 2, . . .}

IE|Z|m ≤ m!Lm0 C
2
0 .

Hence
IE|Z − IEZ|m ≤ m!(2L0)mC2

0 .

So for L < 2L0

IE exp[(Z − IEZ)/L] ≤ 1 +

∞∑
m=2

1

m!Lm
IE|Z − IEZ|m ≤ 1 +

∞∑
m=2

(
2L0

L

)m
C2

0

= 1 +
2L2

0C
2
0

L2 − 2LL0
≤ exp

[
2L2

0C
2
0

L2 − 2LL0

]
.

tu

Combining Lemma 4.4.1 with Lemma 4.4.2 gives us back the following form of
Bernstein’s inequality.

Corollary 4.4.1 Let Z1, . . . , Zn be independent random variables in R that
satisfy for some constant L0

C2
0 := max

1≤i≤n
IE exp[|Zi|/L0] <∞.

Then we can apply Lemma 4.4.1 with K = 2L0 and c = 2nL2
0C

2
0 to find that

for all t > 0

IP

(
1

n

n∑
i=1

(Zi − IEZi) ≥ 2L0

(
C0

√
2t/n+ t/n

))
≤ exp[−t].

4.5 Bounds for weighted sums of squared Gaussians

Consider p normally distributed random variables W1, . . . ,Wp, with mean zero
and variance σ2

0/n. Let W := (W1, . . . ,Wp)
T be the p-dimensional vector col-

lecting the Wj , j = 1, . . . , p. Let a1, . . . , am be m given vectors in Rp, with
‖al‖1 = 1 for l = 1, . . . ,m.

Key ingredient of the proof of the next lemma is that for a N (0, 1)-distributed
random variable V , the conditions of Lemma 4.4.1 hold with K = 2 if we take
Z = V 2 − 1, see [Laurent and Massart [2000], Lemma 1 and its proof].

Lemma 4.5.1 Let 0 < α < 1 be a given error level. Then for

λ2
ε :=

σ2
0

n

(
1 + 2

√
log(m/α) + 2 log(m/α)

)
we have

IP

 max
1≤l≤m

p∑
j=1

aj,lW
2
j ≥ λ2

ε

 ≤ α.
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Lemma 4.5.1 is somewhat a quick and dirty lemma, although the bound is
“reasonable”. As a special case, suppose that aj = ej , the j-th unit vector,
j = 1, . . . ,m, and m = p. Then we see that the bound of Corollary 4.2.1 in
Section 4.2 is generally better than the one of the above lemma. Thus, since
we know that the dual norm of a norm Ω generated by a convex cone is weaker
than the ‖ · ‖∞-norm, Lemma 4.5.1 is in general somewhat too rough.

Proof of Lemma 4.5.1. Write Vj :=
√
nWj/σ0. First check that for all L > 2

IE exp

[
(V 2
j − 1)/L

]
≤ exp

[
1

L2 − 2L

]
,

see also [Laurent and Massart [2000], Lemma 1 and its proof]. We moreover
have for all l

IE exp

[ p∑
j=1

aj,l(V
2
j − 1)/L

]
= IE

( p∏
j=1

exp

[
aj,l(V

2
j − 1)/L

])
.

We now use Hölder’s inequality, which says that for two random variables X
and Y in R, and for 0 < α < 1

IE|X|α|Y |1−α ≤ (IE|X|)α(IE|Y |)1−α.

Hence also

IE

( p∏
j=1

exp

[
aj,l(V

2
j − 1)/L

])
≤

p∏
j=1

(
IE exp

[
(V 2
j − 1)/L

])aj,l
≤

p∏
j=1

(
exp

[
1

L2 − 2L

])aj,l
= exp

[
1

L2 − 2L

]
.

Therefore by Lemma 4.4.1, for all t > 0

IP

( p∑
j=1

aj,l(V
2
j − 1) > 2t+ 2

√
t

)
≤ exp[−t].

Apply the union bound to find that for all t > 0

IP

 max
1≤l≤m

p∑
j=1

aj,l(V
2
j − 1) ≥ 2

√
t+ log(m) + 2(t+ logm)

 ≤ exp[−t].

Finally, take t = log(1/α). tu

4.6 The special case of χ2-random variables

We now reprove part of Lemma 1 in Laurent and Massart [2000].This allows us
a comparison with the results of the previous section.
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Lemma 4.6.1 Let χ2
T be a chi-squared distributed with m degrees of freedom.

Then for all t > 0

IP
(
χ2
T ≥ T + 2

√
tT + 2t

)
≤ exp[−t].

Proof of Lemma 4.6.1. Let V1, . . . , VT be i.i.d. N (0, 1). Then (see the proof
of Lemma 4.5.1)

IE exp

[
(V 2
j − 1)/L

]
≤ exp

[
1

L2 − 2L

]
Hence, by the independence of the Vj ,

IE exp

[ T∑
j=1

(V 2
j − 1)/L

]
≤ exp

[
T

L2 − 2L

]
.

The result now follows from Lemma 4.4.1 (with K = 2 and c = T ). tu

As a consequence, when one considers the maximum of a collection of chi-
squared random variables, each with a relatively large number of degrees of
freedom, one finds that the log-term in the bound becomes negiglible.

Corollary 4.6.1 Let, for j = 1, . . . ,m, the random variables χ2
Tj

be chi-square

distributed with Tj degrees of freedom. Define Tmin := min{Tj : j = 1, . . . ,m}.
Let 0 < α < 1 be a given error level. Then for

λ2
0 :=

1

n

(
1 + 2

√
log(m/α)

Tmin
+

2 log(m/α)

Tmin

)
,

we have

IP

(
max

1≤j≤m
χ2
Tj/Tj ≥ nλ

2
0

)
≤ α.

4.7 The wedge dual norm

The wedge penalty is proportional to the norm

Ω(β) = min
a∈A, ‖a‖1=1

√√√√ p∑
j=1

β2
j

aj
, β ∈ Rp

with A := {a1 ≥ · · · ≥ ap} (see Example 3.9.2 in Section 3.9). Its dual norm is

Ω∗(w) = max
a∈A, ‖a‖1=1

√√√√ p∑
j=1

ajw2
j , w ∈ Rp.

The maximum is attained in the extreme points of A ∩ {‖a‖1 = 1} so

Ω∗(w) = max
1≤k≤p

√√√√ k∑
j=1

w2
j

k
, w ∈ Rp.
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Lemma 4.7.1 Let W1, . . . ,Wp be i.i.d. N (0, 1). Then for all t > 0

IP

(
max

1≤k≤p

1

k

k∑
j=1

W 2
j ≥ 1 + 2

√
t+ 2t

)
≤ e−t

1− e−t
.

Proof of Lemma 4.7.1. By Lemma 4.6.1 we have for all k

IP

(
1

k

k∑
j=1

W 2
j ≥ 1 + 2

√
t+ 2t

)
≤ exp[−kt].

Hence

IP

(
max

1≤k≤p

1

k

k∑
j=1

W 2
j ≥ 1 + 2

√
t+ 2t

)
≤

p∑
k=1

exp[−kt] ≤ e−t

1− e−t
.

tu



Chapter 5

General loss with
norm-penalty

5.1 Introduction

Let X1, . . . , Xn be independent observations with values in some observation
space X and let for β in a space B̄ ⊂ Rp be given a loss function ρβ : X → R.
The parameter space B is some given subset of B̄. The parameter space B is
potentially high-dimensional, so that possibly p � n. We require throughout
convexity of parameter space and loss function. That is, we require Condition
5.1.1 without further explicit mentioning.

Condition 5.1.1 The parameter space B ⊂ B̄ is convex and the map

β 7→ ρβ, β ∈ B

is convex.

Define for all β in the extended space B̄ the empirical risk

Rn(β) := Pnρβ :=
1

n

n∑
i=1

ρβ(Xi)

and the theoretical risk

R(β) := Pρβ := IERn(β).

Let Ω be a norm on Rp. This chapter studies the Ω-structured sparsity M-
estimator

β̂ := arg min
β∈B

{
Rn(β) + λΩ(β)

}
.

with λ > 0 a tuning parameter.

55
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The “true” parameter or “target” is defined as the minimizer of the theoretical
risk over the extended space B̄

β0 := arg min
β∈B̄

R(β)

(where uniqueness is not required without expressing this in the notation). In
many cases one simply is interested in the target with B = B̄.1 On the other
hand β0 may be some more general reference value. As a look-ahead, the main
result, Theorem 5.5.1 in Section 5.5.1 makes no explicit mention of any target
β0 (as it should be from a learning point of view). However, there is a mention
of a local set Blocal. This generally points to a neighbourhood of some target
β0.

5.2 Two point inequality, convex conjugate and two
point margin

We first need to introduce a “local” set Blocal. Without further explicit men-
tioning, we require:

Condition 5.2.1 The set Blocal is a convex subset of B.

The set Blocal is typically a neighbourhood of β0 (for some suitable topology).
The reason is that typically the conditions we will impose (to be precise, Con-
dition 5.2.2) only hold locally. One then needs to prove that the estimator is in
the local neighbourhood. Here one may exploit the assumed convexity of the
loss. Section 5.6 illustrates how this works. There Blocal is the set of β′ ∈ B
which are in a suitable Ω-norm close to β0. In the case of quadratic loss, one
generally does not need to localize, i.e, then one can take Blocal = B. For the
moment we leave the form of the local set unspecified (but we do require its
convexity).

In what follows we will use parameter values β and β′. The value β will represent
a “candidate oracle”, that is, one should think of it as some fixed vector. The
assumption β ∈ Blocal is thus reasonable: candidate oracles are supposed to
know how to get close to the target β0. The value β′ typically represents the
estimator β̂. Thus the assumption β′ ∈ Blocal may mean that some work is to
be done here.

Definition 5.2.1 We call Rn right-differentiable if for all β′, β ∈ Blocal

lim
t↓0

Rn((1− t)β′ + tβ)−Rn(β′)

t
≤ Ṙn(β′)T (β − β′)

where Ṙn(β′) ∈ Rp. We call Ṙn(β′) the right-derivative of Rn at β′.

1An example where this is not the case is where B is a lower-dimensional subspace of B̄.
This is comparable to the situation where one approximates a function (an ∞-dimensional
object) by a p-dimensional linear function (with p large). Formally (since we take B̄ finite-
dimensional) we do not cover the latter case. This latter case does not really lead to additional
theoretical complications, but seems to need cumbersome notations.
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Lemma 5.2.1 (Two point inequality) Suppose Rn is right-differentiable and
that β̂ ∈ Blocal. Then for all β ∈ Blocal

−Ṙn(β̂)T (β − β̂) ≤ λΩ(β)− λΩ(β̂).

Proof of Lemma 5.2.1 . Let β ∈ B and define for 0 < t < 1,

β̂t := (1− t)β̂ + tβ.

Recall that we require Blocal to be convex, so β̂t ∈ Blocal for all 0 < t < 1. We
have for pen := λΩ

Rn(β̂) + pen(β̂) ≤ Rn(β̂t) + pen(β̂t) ≤ Rn(β̂t) + (1− t)pen(β̂) + tpen(β).

Hence
Rn(β̂)−Rn(β̂t)

t
≤ pen(β)− pen(β̂).

The results now follows by sending t ↓ 0. tu

Definition 5.2.2 (Convex conjugate) Let G be an increasing strictly convex
non-negative function on [0,∞) with G(0) = 0. The convex conjugate of G is

H(v) := sup
u≥0

{
uv −G(u)

}
, v ≥ 0.

For example, the convex conjugate of the function u 7→ u2/2 is v 7→ v2/2.

Clearly, if H is the convex conjugate of G one has for all positive u and v

uv ≤ G(u) +H(v).

This is the one-dimensional version of the so-called Fenchel-Young inequality.

We assume that R is differentiable with derivative Ṙ at all β ∈ Blocal ⊂ B.

Condition 5.2.2 (Two point margin condition) There is an increasing strictly
convex non-negative function G with G(0) = 0 and a semi-norm τ on B such
that for all β and β′ in Blocal we have

R(β)−R(β′) ≥ Ṙ(β′)T (β − β′) +G(τ(β − β′)).

Note that R(·) is in view of our assumptions a convex function. One calls

BR(β, β′) := R(β)−R(β′)− Ṙ(β′)T (β − β′), β, β′ ∈ Blocal

the Bregman divergence. Convexity implies that

BR(β, β′) ≥ 0, ∀ β, β′ ∈ Blocal.

But the Bregman divergence is not symmetric in β and β′ (nor does it satisfy
the triangle inequality). The two point margin assumption thus assumes the
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the Bregman divergence is lower bounded by a symmetric convex function. We
present examples in Chapter ??.

We have in mind applying the two point margin condition at β′ = β̂ and
β = β∗ where β∗ is some “oracle” which trades off approximation error, effective
sparsity and part of the vector β∗ where the Ω-norm is smallish. Important to
realize here is that the oracle β∗ is a fixed vector. We note now that in the two
point margin condition we assume the margin function G and the semi-norm τ
not to depend on β′ and β. The first (no dependence on β′) is important, the
last (no dependence on β) can be omitted (because we only need our conditions
at a fixed value β∗). For ease of interpretation we refrain from the more general
formulation.

5.3 Triangle property and effective sparsity

In this section we introduce the triangle property for general norms Ω. The
triangle property is a major ingredient for proving sharp oracle inequalities, see
Theorem 5.5.1 in Section 5.5. Section 5.4 showsthat the triangle property holds
for certain vectors which are either allowed or allowed* (or both). Examples
can be found in Chapter 6.

Definition 5.3.1 Let Ω+ and Ω− be two semi-norms. We call them a complete
pair if Ω+ + Ω− is a norm.

Definition 5.3.2 We say that the triangle property holds at β if for a complete
pair of semi-norms Ω+

β and Ω−β and Ω−β 6≡ 0 one has

Ω(β)− Ω(β′) ≤ Ω+
β (β′ − β)− Ω−β (β′), ∀ β′ ∈ Rp.

Note that in this definition one may choose for Ω+
β a very strong norm. This

has its advantages (Theorem 5.5.1 then gives bounds for estimation error in
a strong norm) but also a major disadvantage as for stronger norms Ω+

β the
effective sparsity defined below will generally be larger.

In the next lemma, a vector β is written as the sum of two terms:

β = β+ + β−.

The situation we have in mind is the following. The vector β represents a
candidate oracle. It may have a “good” sparsity-like part β+ and a “bad”
smallish-like part β−. For the “good” part, the triangle property is assumed.
The “bad” part of a candidate oracle better have small Ω-norm, otherwise this
candidate oracle fails, i.e., it will not pass the test of being oracle. So we think
of the situation where Ω(β−) is small. The term Ω(β−) is carried around in
all the calculations: it is simply there without playing a very active role in the
derivations.
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Lemma 5.3.1 Let β = β+ + β− where β+ has the triangle property and where
Ω+
β+(β−) = 0. Then for any β′ ∈ Rp

Ω(β)− Ω(β′) ≤ Ω+(β′ − β)− Ω−(β′ − β) + 2Ω(β−)

with Ω+ = Ω+
β+ and Ω−

β+ = Ω−.

Proof of Lemma 5.3.1. We will first show that Ω−(β−) ≤ Ω(β−). By
applying the triangle property at β′ := β+ we obtain 0 ≤ −Ω−(β+). Hence
Ω−(β+) = 0. We next apply the triangle property at β′ := β+ +β−. This gives

Ω(β+)− Ω(β+ + β−) ≤ Ω+(β−)− Ω−(β+ + β−) = −Ω−(β+ + β−)

since by assumption Ω+(β−) = 0. By the triangle inequality

Ω−(β+ + β−) ≥ Ω−(β−)− Ω−(β+) = Ω−(β−)

since we just showed that Ω−(β+) = 0. Thus we have

Ω(β+)− Ω(β+ + β−) ≤ −Ω−(β−).

On the other hand, by the triangle inequality

Ω(β+)− Ω(β+ + β−) ≥ −Ω(β−).

Combining the two gives indeed Ω−(β−) ≤ Ω(β−).

Let now β′ be arbitrary. By the triangle inequality

Ω(β)− Ω(β′) ≤ Ω(β+) + Ω(β−)− Ω(β′).

Apply the triangle property to find

Ω(β)− Ω(β′) ≤ Ω+(β+ − β′)− Ω−(β′) + Ω(β−).

Then apply twice the triangle inequality to get

Ω(β)− Ω(β′) ≤ Ω+(β − β′) + Ω+(β−)− Ω−(β − β′) + Ω−(β) + Ω(β−)

≤ Ω+(β − β′)− Ω−(β − β′) + 2Ω(β−),

where in the last step we used that Ω+(β−) = 0 and Ω−(β) ≤ Ω−(β−) ≤ Ω(β−).

tu

Definition 5.3.3 Let β have the triangle property. For τ a semi-norm on Rp
and for a stretching factor L > 0, we define

ΓΩ(L, β, τ) :=

(
min

{
τ(β̃) : β̃ ∈ Rp, Ω+

β (β̃) = 1,Ω−β (β̃) ≤ L
})−1

.

We call Γ2
Ω(L, β, τ) the effective sparsity (for the norm Ω, the vector β, the

stretching factor L and the semi-norm τ).

Effective sparsity is a generalization of compatibility. The reason for the (some-
what) new terminology is because the scaling by the size of some active set is
no longer defined in this general context.
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5.4 Two versions of weak decomposability

Definition 5.4.1 We call a vector β allowed if for a complete pair of semi-
norms Ω+

β and Ω−β with Ω+
β (β) = Ω(β), Ω−β 6≡ 0 and Ω−β (β) = 0, one has

Ω ≥ Ω+
β + Ω−β .

We then call Ω weakly decomposable at β. If in fact we have equality: Ω =
Ω+
β + Ω−β , we call Ω decomposable at β.

Recall that for β 6= 0

∂Ω(β) = {z ∈ Rp : Ω∗(z) = 1, zTβ = Ω(β)}.

Definition 5.4.2 We call a vector β allowed* if for a complete pair of semi-
norms Ω+

β and Ω−β with Ω−β 6≡ 0 one has for all β′ ∈ Rp

min
z∈∂Ω(β)

zT (β − β′) ≤ Ω+
β (β′ − β)− Ω−β (β′).

We then call Ω weakly decomposable* at β.

Lemma 5.4.1 Suppose β is an allowed or an allowed* vector. Then the trian-
gle property holds at β:

Ω(β)− Ω(β′) ≤ Ω+
β (β′ − β)− Ω−β (β′).

Proof of Lemma 5.4.1.
• If β is an allowed vector we have for any β′ the inequality

Ω(β)− Ω(β′) ≤ Ω(β)− Ω+
β (β′)− Ω−β (β′) ≤ Ω+

β (β′ − β)− Ω−β (β′).

• If β is an allowed* vector we have for any z ∈ ∂Ω(β)

Ω(β)− Ω(β′) ≤ zT (β − β′).

Hence

Ω(β)− Ω(β′) ≤ min
z∈∂Ω(β)

zT (β − β′) ≤ Ω+
β (β′ − β)− Ω−β (β′).

tu

If we allow for a ”good” and a ”bad” part in the vector β we get:

Corollary 5.4.1 Let β = β+ + β− where β+ is allowed or allowed* and where
Ω+
β+(β−) = 0. Then by Lemma 5.3.1 combined with Lemma 5.4.1 we have for

any β′ ∈ Rp

Ω(β)− Ω(β′) ≤ Ω+(β′ − β)− Ω−(β′ − β) + 2Ω(β−)

with Ω+ = Ω+
β+ and Ω−

β+ = Ω−.
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We note that β allowed* does not imply β allowed (nor the other way around).
In fact there are norms Ω where for all allowed* β

Ω ≤ Ω+
β + Ω−β

i.e. ≤ instead of ≥ as is per definition the case for allowed vectors. Lemma 6.4.2
in Subsection 6.4.2 shows an example. Here Ω is the nuclear norm as defined
there (Section 6.4).

5.5 A sharp oracle inequality

Notation for the candidate oracle In the next theorem we fix some β ∈
Blocal, a “candidate oracle”. We assume β to be the sum of two vectors β =
β+ + β− where Ω has the triangle property at β+ and where Ω+

β+(β−) = 0.

Write then Ω+ := Ω+
β+ and Ω− := Ω−

β+ We let

Ω := γβΩ+
β + (1− γβ)Ω−β =: Ωβ+

be the strongest norm among all convex combinations γΩ+
β + (1 − γ)Ω−β , γ ∈

[0, 1].

Theorem 5.5.1 Assume Rn is right-differentiable and that Condition 5.2.2
(the two point margin condition) holds. Let H be the convex conjugate of G.
Let

λε ≥ Ω∗

(
Ṙn(β̂)− Ṙ(β̂)

)
. (5.1)

Set λ1 := λεγβ+ and λ2 := λε(1 − γβ+). Take the tuning parameter λ large
enough, so that λ > λ2. Let δ1 ≥ 0 and 0 ≤ δ2 < 1 be arbitrary and define

λ := λ− λ2, λ̄ := λ+ λ1 + δ1λ

and stretching factor

L :=
λ̄

(1− δ2)λ
.

Then, when β̂ ∈ Blocal,

δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β) +R(β̂)

≤ R(β) +H

(
λ̄ΓΩ(L, β+, τ)

)
+ 2λΩ(β−).

Note that it is assumed that β̂ ∈ Blocal. Theorem 5.6.1 gives an illustration how
this can be established. Note also that no reference is made to the target β0.
However, in Theorem 5.6.1 Blocal as some local neighbourhood of β0, so in the
end the target does play a prominent role.
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We need inequalities for Ω∗(Ṙn(β̂) − Ṙ(β̂)). This term occurs because in the
proof of the theorem the dual norm inequality is applied:

(Ṙn(β̂)− Ṙ(β̂))T (β̂ − β) ≤ Ω∗(Ṙn(β̂)− Ṙ(β̂))Ω(β̂ − β).

This is in some cases too rough. An alternative route is possible.

We refer the a vector β∗ = β∗+ + β∗− which trades off approximation error,
estimation error (the term involving H(·)) in Theorem 5.5.1) and Ω-smallish
coefficients as the oracle.

Typically, the margin function G is quadratic, say G(u) = u2/2, u ≥ 0. Then
its convex conjugate H(v) = v2/2, v ≥ 0 is quadratic as well. The estimation
error is then

H

(
λ̄ΓΩ(L, β+, τ)

)
= λ̄2Γ2

Ω(L, β+, τ).

Proof of Theorem 5.5.1. Define

Rem(β̂, β) := R(β)−R(β̂)− Ṙ(β̂)T (β − β̂).

Then we have

R(β̂)−R(β) + Rem(β̂, β) = −Ṙ(β̂)T (β − β̂).

• So if

Ṙ(β̂)T (β − β̂) ≥ δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β)− 2λΩ(β−)

we find from Condition 5.2.2

δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β) +R(β̂) ≤ R(β) + 2λΩ(β−)

(as Rem(β̂, β) ≥ 0). So then we are done.

• Assume now in the rest of the proof that

Ṙ(β̂)T (β − β̂) ≤ δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β)− 2λΩ(β−).

From Lemma 5.2.1

−Ṙn(β̂)T (β − β̂) ≤ λΩ(β)− λΩ(β̂).

Hence by the dual norm inequality

−Ṙ( β̂ )T (β − β̂) + δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β)

≤ (Ṙn(β̂)− Ṙ(β̂))T (β − β̂) + δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β)

+ λΩ(β)− λΩ(β̂)

≤ λεΩ(β̂ − β) + δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β) + λΩ(β)− λΩ(β̂)

≤ λ1γβ+Ω+(β̂ − β) + λ2(1− γβ+)Ω−(β̂ − β) + δ1λΩ+(β̂ − β)

+ δ2λΩ−(β̂ − β) + λΩ+(β̂ − β)− λΩ−(β̂ − β) + 2λΩ(β−)

= λ̄Ω+(β̂ − β)− (1− δ2)λΩ−(β̂ − β) + 2λΩ(β−)
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(here we applied Corollary 5.4.1). In summary

−Ṙ(β̂)T (β − β̂) + δ1λΩ+(β̂ − β) + δ2λΩ−(β̂ − β)

≤ λ̄Ω+(β̂ − β)− (1− δ2)λΩ−(β̂ − β) + 2λΩ(β−) (5.2)

But then
(1− δ2)λΩ−(β − β) ≤ λ̄Ω+(β̂ − β)

or
Ω−(β̂ − β) ≤ LΩ+(β̂ − β).

The implies by the definition of the effective sparsity ΓΩ(L, β+, τ)

Ω+(β̂ − β) ≤ τ(β̂ − β)ΓΩ(L, β+, τ).

Continuing with (5.2), we find

−Ṙ(β̂)T (β − β̂) + λΩ−(β̂ − β) + δ1λΩ+(β̂ − β)

≤ λ̄Ω+(β̂ − β) + 2λΩ(β−)

≤ λ̄ΓΩ(L, β+, τ)τ(β̂ − β) + 2λΩ(β−)

or

R(β̂)−R(β) + Rem(β̂, β) + λΩ−(β̂ − β) + δ1λΩ+(β̂ − β)

≤ λ̄ΓΩ(L, β+, τ)τ(β̂ − β) + 2λΩ(β−)

≤ H

(
λ̄ΓΩ(L, β+, τ)

)
+G(τ(β̂ − β)) + 2λΩ(β−)

≤ H

(
λ̄ΓΩ(L, β+, τ)

)
+ Rem(β̂, β) + 2λΩ(β−).

tu

5.6 Localizing (or a non-sharp oracle inequality)

This section considers the situation where one settles for showing that β̂ is
consistent in Ω-norm. The local set Blocal is taken in the set where β̂ is Ω-close
to the candidate oracle β.

Theorem 5.6.1 below does not require differentiability of Rn and only needs
Condition 5.2.2 at β′ equal to β0. We call this the one point margin condition.

Condition 5.6.1 (One point margin condition) There is an increasing strictly
convex function G with G(0) = 0 and a semi-norm τ on B such that for all
β ∈ Blocal

R(β)−R(β0) ≥ G(τ(β − β0)).

Notation for the candidate oracle We again fix some candidate oracle
β ∈ Blocal which we assume to be the sum β = β+ + β− of two vectors β+ and
β− with β+ having the triangle property and with Ω+

β+(β−) = 0. Write then

Ω+ := Ω+
β+ , Ω− := Ω−

β+ and (for simplicity) Ω := Ω+ + Ω−.
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Theorem 5.6.1 Assume Condition 5.6.1 and let H be the convex conjugate
of G. Suppose that for some constant 0 < Mmax ≤ ∞ and λε and for all
0 < M ≤Mmax

sup
β′∈B: Ω(β′−β)≤M

∣∣∣∣[Rn(β′)−R(β′)]− [Rn(β)−R(β)]

∣∣∣∣ ≤ λεM. (5.3)

Let 0 < δ < 1, take λ ≥ 8λε/δ and define Mβ by

δλMβ := 4H

(
λ(1 + δ)ΓΩ

(
1

1− δ
, β+, τ

))
+ 8

(
R(β)−R(β0)

)
+ 16λΩ(β−).

Assume that Mβ ≤ Mmax and that {β′ ∈ B : Ω(β′ − β) ≤ Mβ} ⊂ Blocal. Then

Ω(β̂ − β) ≤Mβ and hence β̂ ∈ Blocal. Moreover, it holds that

R(β̂)−R(β) ≤ (λε + λ)Mβ + λΩ−(β).

Probability inequalities for the empirical process{
[Rn(β′)−R(β′)]− [Rn(β)−R(β)] : Ω(β′ − β) ≤M, β′ ∈ B

}
(with β ∈ B and M > 0 fixed but arbitrary) will be provided. We note that -
unlike Theorem 5.5.1 - Theorem 5.6.1 involves the approximation error R(β)−
R(β0) and hence it only gives “good” results if the approximation error R(β)−
R(β0) is “small”. Perhaps in contrast to general learning contexts, this is not
too much of a restriction in certain cases. For example in linear regression with
fixed design we have seen in Section 1.2 that high-dimensionality implies that
the model is not misspecified.

Note that if B = B̄, then the target β0 = arg minβ∈B R(β) is by definition in
the class B. If one is actually interested in a target β0 = minβ∈B̄ R(β) outside
the class B, this target will generally have margin behaviour different from the
minimizer within B.

We remark here that we did not try to optimize the constants in Theorem 5.6.1.

Some explanation of the oracle we are trying to mimic here is in place. The
oracle is some fixed vector β∗ = β∗+ + β∗− satisfying the conditions as stated
with Ω+ := Ω+

β∗+ and Ω− := Ω−
β∗+ . We take β∗ in such a way that M∗ := Mβ∗

is the smallest value among all β’s satisfying the conditions as stated and such
that in addition Ω(β∗ − β0) ≤ M∗ where Ω = Ω+ + Ω−, i.e. the oracle is in a
suitable Ω-neighbourhood of the target (note that Ω depends on β∗). We define
Blocal as Blocal := B ∩ {β′ : Ω(β′ − β0) ≤ 2M∗}. Then obviously β∗ ∈ Blocal and
by the triangle inequality {β′ ∈ B : Ω(β′−β∗) ≤M∗} ⊂ Blocal. Hence, then we
may apply the above theorem with β = β∗. The situation simplifies drastically
if one can choose β0 itself as candidate oracle. See for example Subsection 6.3.1
for an illustration how Theorem 5.6.1 can be applied.
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Proof of Theorem 5.6.1. To simplify the notation somewhat we write M :=
Mβ. Define β̃ := tβ̂ + (1− t)β, where

t :=
M

M + Ω(β̂ − β)
.

Then

Ω(β̃ − β) = tΩ(β̂ − β) =
MΩ(β̂ − β)

M + Ω(β̂ − β)
≤M.

Therefore β̃ ∈ Blocal. Moreover, by the convexity of Rn + λΩ

Rn(β̃) + λΩ(β̃) ≤ tRn(β̂) + tλΩ(β̂) + (1− t)Rn(β) + (1− t)λΩ(β)

≤ Rn(β) + λΩ(β).

Rewrite this and apply the assumption (5.3):

R(β̃)−R(β) ≤ −
[
[Rn(β̃)−R(β̃)]− [Rn(β)−R(β)]

]
+ λΩ(β)− λΩ(β̃)

≤ λεM + λΩ(β)− λΩ(β̃)

≤ λεM + λΩ+(β̃ − β)− λΩ−(β̃ − β) + 2λΩ−(β),

where we invoked Lemma 5.3.1.

• If λΩ+(β̃ − β) ≤ (1− δ)[λεM +R(β)−R(β0) + 2λΩ(β−)]/δ, we obtain

δλΩ+(β̃ − β) ≤ λεM + [R(β)−R(β0)] + 2λΩ(β−)

as well as

δλΩ−(β̃ − β) ≤ λεM + [R(β)−R(β0)] + 2λΩ(β−).

So then

δλ(Ω+ + Ω−)(β̃ − β) ≤ 2λεM + 2[R(β)−R(β0)] + 4λΩ(β−).

• If λΩ+(β̃ − β) ≥ (1− δ)[λεM +R(β)−R(β0) + 2λΩ(β−)]/δ we obtain

[R(β̃)−R(β0)] + λΩ−(β̃ − β) ≤ λΩ+(β̃ − β)/(1− δ).

So then we may apply effective sparsity with stretching factor L = 1/(1 − δ).
Hence

[R( β̃ )−R(β0)] + λΩ−(β̃ − β) + δλΩ+(β̃ − β)

≤ λ(1 + δ)Ω+(β̃ − β) + λεM + [R(β)−R(β0)] + 2λΩ(β−)

≤ λ(1 + δ)τ(β̃ − β)ΓΩ(1/(1− δ), β+, τ) + λεM + [R(β)−R(β0)] + 2λΩ(β−)

≤ H
(
λ(1 + δ)ΓΩ(1/(1− δ), β+, τ)

)
+ λεM + 2[R(β)−R(β0)] + 2λΩ(β−).

It follows hat

δλ(Ω+ + Ω−)(β̃ − β) ≤ λΩ−(β̃ − β) + δλΩ+(β̃ − β)
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≤ H
(
λΓΩ(1/(1− δ), β+, τ)

)
+ λεM + 2[R(β)−R(β0)] + 2λΩ(β−).

Hence, we have shown in both cases that

δλ(Ω+ + Ω−)(β̃ − β) ≤ H
(
λ(1 + δ)ΓΩ(1/(1− δ), β+, τ)

)
+ 2[R(β)−R(β0)] + 2λεM + 4λΩ(β−)

= δλM/4 + 2λεM ≤ δλM/2

where we used the definition of M and that λ ≥ 8λε/δ. In turn, this implies
that

(Ω+ + Ω−)(β̂ − β) ≤M.

For the second result of the theorem we apply the formula

R(β̂)−R(β) ≤ −
[
[Rn(β̂)−R(β̂)]− [Rn(β)−R(β)]

]
+ λΩ(β)− λΩ(β̂)

≤ λεM + λΩ+(β̂ − β) + 2λΩ−(β)

≤ (λε + λ)M + 2λΩ−(β).

tu



Chapter 6

Some worked-out examples

6.1 The Lasso and square-root Lasso completed

We use the notation of Chapters 1 and 2. Recall the linear model

Y = Xβ0 + ε

with ε ∼ Nn(0, σ2
0I) andX and a given p×nmatrix. We assume diag(XTX)/n =

I. Define W := XT ε/n = (W1, . . . ,Wp)
T . Note that Wj ∼ N (0, σ2

0/n) for all j.

Combining Theorem 1.8.1 with Corollary 4.2.1 completes the result for the
Lasso.

Corollary 6.1.1 Let for some 0 < α < 1

λε := σ0

√
2 log(2p/α)

n
.

Let 0 ≤ δ < 1 be arbitrary and define for λ > λε

λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.

Then for all β ∈ Rp and all S we have with probability at least 1− α

2δλ‖β̂ − β‖1 + ‖X(β̂ − β0)‖2n ≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2(L, S)
+ 4λ‖β−S‖1.

We now combine Theorem 2.5.1 with Lemma 4.2.2 to complete the result for
the square-root Lasso.

Corollary 6.1.2 Define for some positive α and α satisfying α + α < 1 the
quantities

R =

√
2 log(2p/α)

n− 1
, σ2 := σ2

0

(
1− 2

√
log(1/α)

n

)
.

67
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Assume for some η > 0

λ0‖β0‖1 ≤ 2σ

(√
1 + (η/2)2 − 1

)
, λ0(1− η) > R.

For arbitrary 0 ≤ δ < 1 define

λ0 := λ0(1− η)−R,
λ̄0 := λ0(1 + η) +R+ δλ0

and

L :=
λ̄0

(1− δ)λ0

.

Then for all β and S, with probability at least 1− α− α we have

2δλ0‖β̂ − β‖1‖ε‖n + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2

0|S|‖ε‖2n
φ̂2(L, S)

+ 4λ0(1 + η)‖ε‖n‖β−S‖1.

6.2 Least squares loss with Ω-structured sparsity com-
pleted

We use the notation of Chapter 3. Again the linear model is examined:

Y = Xβ0 + ε

with ε ∼ Nn(0, σ2
0I) and X and a given p × n matrix with diag(XTX)/n = I.

We set W := XT ε/n = (W1, . . . ,Wp)
T . As in Section 3.9 we let A be a convex

cone in Rp+ =: [0,∞)p and define

Ω(β) := min
a∈A

1

2

p∑
j=1

[
|βj |2

aj
+ aj

]
, β ∈ Rp.

For an allowed set S such that AS ⊂ A (see Lemma 3.9.4) we define ES(A) as
the set of extreme points of AS∩{‖aS‖1 ≤ 1} and E−S(A) as the set of extreme
points of A−S ∩ {‖a−S‖1 ≤ 1}. We now assume both ES(A) and E−S(A) are
finite and define for positive error levels α1 and α2 such that α1 + α2 ≤ 1

nλ2
S

σ2
0

:= min

{(
1 + 2

√
log

(
|ES(A)|
α1

)
+ 2 log

(
|ES(A)|
α1

))
, 2 log

(
2|S|
α1

)}
and

n(λ−S)2

σ2
0

:=

min

{(
1 + 2

√
log

(
|E−S(A)|

α2

)
+ 2 log

(
|E−S(A|)

α2

))
, 2 log

(
2(p− |S|)

α2

)}
.
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We obtain from Lemma 4.5.1 that with probability at least 1− α1 − α2,

Ω∗(X
T
S ε)/n ≤ λS , Ω−S∗ (XT

−Sε)/n ≤ λ−S .

(Recall that Ω∗(X
T ε)/n ≤ max{Ω∗(XT

S ε)/n,Ω
−S
∗ (XT

−Sε)/n}, see Lemma 3.4.1.)

Theorem 3.6.1 then leads to the following corollary.

Corollary 6.2.1 Let Ω be the norm generated from the convex cone A and
consider the Ω-structured sparsity estimator

β̂ := arg min

{
‖Y −Xβ‖2n + 2λΩ(β)

}
.

Assume for all allowed sets S that ES(A) and E−S(A) are finite. Let, for allowed
sets S, the constants λS and λ−S be defined as above. Let δ1 ≥ 0 and 0 ≤ δ2 < 1
be arbitrary. Take λ > max{λ−S : S allowed} and define

λ := λ− λ−S , λ̄ := λ+ λS + δ1λ

and

L :=
λ̄

(1− δ2)λ
.

Then for any allowed set S and any β, with probability at least 1 − α1 − α2 it
holds that

2δ1λΩ(β̂S − β) + 2δ2λΩ−S(β̂−S) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2
Ω(L, S)

+ 4λΩ(β−S).

For the group Lasso (see Example 3.9.1) we may improve the lower bound on the
tuning parameter. We assume orthogonal design within groups XT

Gt
XGt/n = I.

Equivalently, one may define the penalty as

Ωgroup(β) :=
T∑
t=1

√
|Gt|‖XβGt‖n, β ∈ Rp.

Combining Corollary 4.6.1 with Theorem 3.6.1 we arrive at the following.

Corollary 6.2.2 Consider the group Lasso as in Example 3.9.1:

β̂ := arg min

{
‖Y −Xβ‖2n + 2λΩgroup(β)

}
.

Assume within-group orthogonal design. Let 0 ≤ δ < 1 be arbitrary. Take

λ > λε :=
σ0√
n

(
1 + 2

√
log(m/α)

Tmin
+

2 log(m/α)

Tmin

)1/2

,
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where T is the number of groups and Tmin := min{|Gj | : j = 1, . . . ,m} is the
minimal group size. Define

λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.

Then for any allowed set S and any β, with probability at least 1 − α it holds
that

2δλΩgroup(β̂ − β) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2
Ωgroup

(L, S)
+ 4λΩgroup(β−S).

The wedge penalty (see Example 3.9.2) corresponds to taking

Ωwedge(β) = arg min
a1≥...≥ap≥0, ‖a‖1=1

√√√√ p∑
j=1

β2
j

aj
, β ∈ Rp.

In the case of orthogonal design we have an improved version of the generic
Corollary 6.2.1. For simplicity we take δ1 = δ2 =: δ and α1 = α2 =: α in this
case.

Corollary 6.2.3 Consider the wedge estimator from Example 3.9.2:

β̂ := arg min

{
‖Y −Xβ‖2n + 2λΩwedge(β)

}
.

Let 0 ≤ δ < 1 be arbitrary. Suppose orthogonal design: Σ̂ = I (and hence
p ≤ n). Let 0 < α < 1/2. Take

λ > λε :=
σ0√
n

(
1 + 2

√
log

(
1 + α

α

)
+ 2 log

(
1 + α

α

))1/2

.

Define
λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.

Apply Lemma 4.7.1 to find that for any allowed set S and any β, with probability
at least 1− 2α it holds that

2δλ Ωwedge(β̂ − β) + ‖X(β̂ − β0)‖2n

≤ ‖X(β − β0)‖2n +
λ̄2|S|

φ̂2
Ωwedge

(L, S)
+ 4λΩwedge(β−S)

where Ωwedge = Ωwedge(·|S) + Ω−Swedge.
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6.3 Logistic regression

Let (X1, Y1), . . . , (Xn, Yn) be independent observations, with Yi ∈ {0, 1} the
response variable and Xi ∈ X ⊂ Rp a co-variable (i = 1, . . . , n). The loss for
logistic regression is

ρβ(x, y) := −yxβ + d(xβ), β ∈ Rp

where

d(ξ) = log(1 + eξ), ξ ∈ R.

We take the norm Ω in the penalty to be the `1-norm. Furthermore, we im-
pose no restrictions on β, i.e. B := Rp. The `1-regularized logistic regression
estimator is then

β̂ := arg min
β∈Rp

{
1

n

n∑
i=1

[
−YiXiβ + d(Xiβ)

]
+ λ‖β‖1

}
.

Define for i = 1, . . . , n and x ∈ X

µ0
i (x) := IE(Yi|Xi = x), f0

i (x) = log

(
µ0
i (x)

1− µ0
i (x)

)
.

We assume the generalized linear model is well-specified: for some β0

f0(x) = xβ0, ∀ x ∈ X .

In the high-dimensional situation with rank(X) = n ≤ p, and with fixed design,
we can take here X = {X1, . . . , Xn} and then there always is a solution β0 of the
equation f0(x) = xβ0, x ∈ X . In what follows we consider fixed and random
design, but in both cases we take the risk for fixed design, which we write as

R(β|X) :=
1

n

n∑
i=1

[
−ḋ(Xiβ

0)Xiβ + d(Xiβ)

]
, β ∈ Rp.

We have

d̈(ξ) =
eξ

(1 + eξ)2
.

It follows that for ‖β − β0‖1 ≤M

d̈(xβ) ≥ 1/C2
M (x),

where
1

C2
M (x)

=

(
1

1 + eβ0x+‖xT ‖∞M

)(
1− 1

1 + eβ0x−‖xT ‖∞M

)
.
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6.3.1 Logistic regression with fixed, bounded design

We assume that X is fixed and that for Σ̂ := XTX/n, diag(Σ̂) = I, i.e., the de-
sign is normalized. We write K1 := max1≤i≤n |Xi| and K0 := max1≤i≤n |f0(Xi)|
and

1

C2
M

:=

(
1

1 + eK0+K1

)(
1− 1

1 + e−K0−K1

)
.

Theorem 6.3.1 Let λε :=
√

2 log(2p/α). Let further, for some 0 < δ < 1,
λ ≥ 8λε/(1− δ). Define

λ := λ− λε, λ̄ := λ+ λε + δλ

and

L :=
λ̄

(1− δ)λ
.

Furthermore, define for any vector β ∈ Rp and set S ⊂ {1, . . . , p}.

δλMβ,S :=
2C2

1λ
2(1 + δ2)|S|
φ̂2(L, S)

+ 8(R(β|X)−R(β0|X)) + 16λ‖β−S‖1.

For those β and S such that Mβ,S ≤ 1/2 we have with probability at least 1−α

δλ‖β̂ − β‖1 +R(β̂|X) ≤ R(β|X) +
C2λ̄2|S|

2φ̂2(L, S)
+ 2λ‖β−S‖1.

6.4 Trace regression with nuclear norm penalization

Suppose
Yi = trace(XiB

0) + εi, i = 1, . . . , n,

where B0 is a p× q matrix and Xi (i = 1, . . . , n) is a q × p matrix with q ≤ p.

Writing
X̃iβ

0 := trace(XiB
0),

where X̃T
i := vec(XT

i ), β0 := vec(B0), we see that this is the linear model:

Y1 = X̃iβ
0 + εi, i = 1, . . . , n.

The reason it is written in trace form is because actually the structure in β0

is now not assumed to be in the sparsity of the coefficients, but rather in the
sparsity of the singular values of B0. The norm induces this sparsity structure
is the nuclear norm

Ω(β) := ‖B‖nuclear, B = vec−1(β),

where ‖·‖nuclear is the nuclear norm. In what follows, we will identify matrices B
with their vectorization vec(B) and simply write Ω(B) = ‖B‖nuclear. Recall that
‖ · ‖2 is used as notation for the Frobenius norm when matrices are concerned.
For a matrix A we let Λ2

max(A) being the largest eigenvalue of ATA.
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6.4.1 Some useful matrix inequalities

Lemma 6.4.1 Let A be a p× q matrix. Then

‖A‖nuclear ≤
√

rank(A)‖A‖2.

Let P be a p× s matrix with P TP = I and s ≤ p. Then

‖PP TA‖2 ≤
√
sΛmax(A)

and

‖PP TA‖2 ≤ ‖A‖2.

Proof of Lemma 6.4.1. Let r := rank(A). Write the singular value decom-
position of A as

A = PAΛAQ
T
A

with P TAPA = I, QTAQA = I and ΛA = ΛA,1, . . . ,ΛA,r. Then ‖A‖nuclear =∑r
k=1 ΛA,k and ‖A‖22 = trace(ATA) =

∑r
k=1 Λ2

A,k. The first result thus follows

from ‖u‖1 ≤
√
r‖u‖2 for a vector u ∈ Rr.

For the second result we introduce the p-dimensional j-th unit vector ej , (j =
1, . . . , p). Then

eTj PP
TAATPP T ej ≤ Λ2

max(A)‖PP T ej‖22

and hence

‖PP TA‖22 = trace(PP TAATPP T ) =

p∑
j=1

eTj PP
TAATPP T ej

≤ Λ2
max(A)

P∑
j=1

‖PP T ej‖22 = Λ2
max(A)trace(PP T )

= sΛ2
max(A).

For the last result we write

‖A‖22 = trace(ATA) = trace((PP TA+ (I − PP )TA)T (PP TA+ (I − PP T )A))

= trace((PP TA)T (PP TA)) + trace(((I − PP T )A)T (I − PP T )A)

≥ trace((PP TA)T (PP TA)) = ‖PP TA‖22.

tu
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6.4.2 Dual norm of the nuclear norm and its triangle property

The dual norm of Ω = ‖ · ‖nuclear is

Ω∗ = Λmax.

Moreover (see Watson [1992])

∂‖B‖nuclear = {Z = PQT + (I − PP T )W (I −QQT ) : Λmax(W ) = 1}.

Let the p× q matrix B have rank s and singular value decomposition

B = PΛQT ,

with P a p × s matrix, Q a q × s matrix, P TP = I, QTQ = I, and Λ =
diag(Λ1, . . . ,Λs) the diagonal matrix of non-zero singular values, where Λ1 ≥
. . . ≥ Λs > 0.

Lemma 6.4.2 The norm Ω = ‖ · ‖nuclear has the triangle property at B, with

Ω+
B(B′) =

√
s(‖PP TB′‖2 + ‖B′QQT ‖2 + ‖PP TB′QQT ‖2)

and

Ω−B(B′) = ‖(I − PP T )B′(I −QQ)T ‖nuclear.

Moreover

‖ · ‖nuclear ≤ Ω+
B + Ω−B.

Remark 6.4.1 As for the last result, note the contrast with weakly decompos-
able norms as defined in Section 3.4, which have Ω ≥ Ω+ + Ω−.

Proof of Lemma 6.4.2. Write for Z ∈ ∂‖B‖nuclear

Z := Z1 + Z2, Z1 = PQT , Z2 = (I − PP T )W (I −QQT ).

We have

trace(ZT1 B
′) = trace(QP TB′) = trace(P TB′Q)

= trace(P TPP TB′QQTQ) = trace(QP TPP TB′QQT )

≤ ‖PP TB′QQT ‖nuclear

since Λmax(PQT ) = 1. Moreover

trace(ZT2 B
′) = trace((I −QQT )W T (I − PP T )B′)

= trace(W T (I − PP T )B′(I −QQT )).

Hence, there exists a W with Λmax(W ) = 1 such that

trace(W TB′) = ‖(I − PP T )B′(I −QQT )‖nuclear.
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We thus see that (replacing B′ by B′ −B)

max
Z∈∂‖B‖nuclear

trace( ZT (B′ −B))

= max
Λmax(W )=1

trace((I −QQT )W T (I − PP T )(B′ −B))

+ trace(QP T (B′ −B))

≥ ‖(I − PP T )B′(I −QQT )‖nuclear − ‖PP T (B′ −B)QQT ‖nuclear.

Now use Lemma 6.4.1 to get

‖PP T (B′ −B)QQT ‖nuclear ≤
√
s‖PP T (B′ −B)QQT ‖2 ≤ Ω+(B′ −B).

Obtaining the second result of the lemma is almost trivial: for all B′

‖B′‖nuclear = ‖PP TB′ +B′QQT − PP TB′QQT + (I − PP T )B′(I −QQT )‖nuclear

≤ ‖PP TB′‖nuclear + ‖B′QQT ‖nuclear

+ ‖PP TB′QQT ‖nuclear + ‖(I − PP T )B′(I −QQT )‖nuclear

≤
√
s(‖PP TB′‖2 + ‖B′QQT ‖2 + ‖PP TB′QQT ‖2)

+ ‖(I − PP T )B′(I −QQT )‖nuclear

where we invoked Lemma 6.4.1. tu

Lemma 6.4.3 Let
Ω := Ω+

B + Ω−B

with Ω+
B and Ω−B as in Lemma 6.4.2 Then

Ω∗(·) ≤ Λmax(·).

Proof of Lemma 6.4.3. This follows from ‖ · ‖nuclear ≤ Ω (see Lemma 6.4.2)
and the fact that the nuclear norm has dual norm Λmax.

tu

Notation for the candidate oracle We will next provide the notation for
the candidate oracle B which we might aim at mimicking. Recall that q ≤ p.
Let

B = PΛQT

with P a p × q matrix, Q a q × q matrix, P TP = I, QTQ = I, and Λ =
diag(Λ1, . . . ,Λq) where Λ1 ≥ . . . ≥ Λq.

Write

B = B+ +B−, B+ =
s∑

k=1

ΛkPkQ
T
k , B

− =

q∑
k=s+1

ΛkPkQ
T
k . (6.1)

We see that

‖B−‖nuclear =

q∑
k=s+1

Λk, Ω+
B+(B−) = 0.

Define Ω := Ω+
B+ + Ω−

B+ .
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6.4.3 An oracle result for trace regression with least squares
loss

We consider the nuclear norm regularized estimator

B̂ := arg min
B

{ n∑
i=1

(Yi − trace(XiB))2/n+ 2λ‖B‖nuclear

}
.

Definition 6.4.1 Let L > 0 be some stretching factor. Suppose B has singular
value decomposition PΛQT . Let s := rank(B). We define the ‖ · ‖nuclear-
compatibility constant at B as

φ̂2
nuclear(L,B) := min

{
s

n

n∑
i=1

trace2(XiB
′) :

√
s(‖PP TB′‖2 + ‖B′QQT ‖2 + ‖PP TB′QQT ‖2) = 1,

‖(I − PP )TB′(I −QQ)T ‖nuclear ≤ L
}
.

Corollary 6.4.1 Application of Theorem 5.5.1 to the nuclear norm penalty
gives the following. Let B = B+ + B− where B+ and B− are given in (6.1).
Let now

λε ≥ Λmax

( n∑
i=1

εiXi

)
/n.

For λ > λε, λ := λ− λε, λ̄ := λ+ λε + δλ, L := λ̄/((1− δ)λ), we have

δλΩ(B̂ −B)nuclear +
1

n

n∑
i=1

trace2(Xi(B̂ −B0))/n

≤ 1

n

n∑
i=1

trace2(Xi(B −B0)) +
sλ̄2

φ̂2
nuclear(L,B

+)
+ 4λ‖B−‖nuclear.

We refer to Section ?? for a probability inequality for the maximal eigenvalue
Λmax(

∑n
i=1 εiXi)/n in the context of matrix completion.

Recall that (see Lemma 6.4.2) ‖ · ‖nuclear ≤ Ω. Hence from Corollary 6.4.1 one
may also establish a bound for the nuclear norm estimation error.

6.4.4 Robust matrix completion

Let B be the collection of p × q matrices with all entries bounded by some
constant η > 0:

B := {B : ‖B‖∞ ≤ η}.

The bounded parameter space B allows one to take Blocal = B when applying
Theorem 5.6.1. We will not prove a sharp oracle inequality in this subsection
because the loss is not twice differentiable. We conjecture though that lack of
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differentiability per se is not a reason for impossibility of sharp oracle inequal-
ities.

Let X be the space of all p × q matrices X consisting of zeroes at all entries
except for a single entry at which the value equal to one:

X =



0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
...

...
...

...
0 · · · 0 · · · 0 0


.

Such matrices - called masks - have also been studied in Section ??. There are
q × p such matrices. We let {X1, . . . , Xn} be i.i.d. with values in X . Consider
the least absolute deviations estimator

B̂ := arg min
B∈B

{
1

n

n∑
i=1

|Yi − trace(XiB)|+ λ‖B‖nuclear

}
.

Theorem 6.4.1 Let B be given in (6.1). Suppose that ε1, . . . , εn are i.i.d. with
median zero and with density fε with respect to Lebesgue measure. Assume that
for some positive constant C and some η > 0.

fε(u) ≥ 1/C2 ∀ |u| ≤ 2η.

Define for C0 is suitable universal constant

λε := 4C0

√
1

q

√
log(p+ q)

n

+ 4C0

√
log(1 + q)

(
log(p+ q)

n

)
+

√
8 log(1/α)

n
.

Take for some 0 < δ < 1 λ ≥ 8λε/δ and define MB by

δλMB = 6C2λ2(1 + δ)2pqs+ 8

(
R(B)−R(B0)

)
+ 16λ‖B−‖nuclear.

Then with probability at least 1− α we have Ω(B̂ −B) ≤MB and

R(B̂)−R(B) ≤ (λε + λ)MB + 2λ‖B−‖nuclear.

Asymptotics and weak sparsity Suppose that q log(1 + q) is of small order
n/ log p. Theorem 6.4.1 shows that for a suitable value for the tuning parameter
λ of order λ �

√
log p/nq one has

R(B̂)−R(B0) = OIP

(
ps log p

n
+R(B)−R(B0) +

√
log p

nq
‖B−‖nuclear

)
.
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This implies

‖B̂ −B0‖22 = OIP

(
p2qs log p

n
+ pq(R(B)−R(B0)) + p

√
q

√
log p

n
‖B−‖nuclear

)
.

For example, taking B = B0 and letting s0 be the rank of B0, we get

‖B̂ −B0‖22 = OIP

(
p2qs log p

n

)
.

Admittedly, this is a slow rate, but this is as it should be. For each parameter,
the rate of estimation is

√
pq/n because we have only about n/(pq) noisy obser-

vations of this parameter. Without penalization, the rate in squares Frobenius
norm would thus be

pq × pq

n
=
p2q2

n
.

With penalization, the estimator mimicks an oracle that only has to estimate
ps0 (instead of pq) parameters, with a log p-prize to be paid.

Instead of assuming B0 itself is of low rank, one may assume it is only weakly
sparse. Let B0 have singular values {Λ0

k}
q
k=1. Fix some 0 < r < 1 and let

ρrr :=

q∑
k=1

|Λ0
k|r.

Then we obtain (Problem ??) (take B = B0 and use the same arguments as in
Lemma 1.10.1 in Section 1.10)

‖B̂ −B0‖22 = OIP

(
p2q log p

n

)1−r
ρ2r
r . (6.2)

6.5 Sparse principal components

Consider an n × p matrix X with i.i.d. rows {Xi}ni=1. Let Σ̂ := XTX/n and
Σ0 := IEΣ̂. In this section the estimation of the first principal component
q0 ∈ Rp corresponding to the largest eigenvalue φ2

max := Λmax(Σ0) of Σ0 is
studied. The parameter of interest is β0 := q0φmax, so that ‖β0‖22 = φ2

max

(since the eigenvector q0 is normalized to have ‖ · ‖2-length one). It is assumed
that β0 is sparse.

Denote the Frobenius norm of a matrix A by ‖A‖2:

‖A‖22 :=
∑
j

∑
k

A2
j,k.

We use the `1-penalized estimator

β̂ := arg min
β∈B

{
1

4
‖Σ̂− ββT ‖22 + λ‖β‖1

}
,
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with λ > 0 a tuning parameter. The estimator is termed a sparse PCA estima-
tor.

For the set B we take an “`2-local” set:

B := {β̃ ∈ Rp : ‖β̃ − β0‖2 ≤ η}

with η > 0 a suitable constant. To get into such a local set, one may have to
use another algorithm, with perhaps a slower rate than the one we obtain in
Theorem 6.5.1 below. This caveat is as it should be, see Berthet and Rigollet
[2013]: the fast rate of Theorem 6.5.1 cannot be achieved by any polynomial
time algorithm unless e.g. one assumes a priori bounds. In an asymptotic
setting, the constant η is not required to tend to zero. We will need 3η to be
smaller than the gap between the square-root largest and square-root second
largest eigenvalue of Σ0.

In the risk notation: the empirical risk is

Rn(β) := ‖Σ̂− ββT ‖22 = −1

2
βT Σ̂β +

1

4
‖β‖42.

Here, it may be useful to note that for a symmetric matrix A

‖A‖22 = trace(A2).

Hence

‖ββT ‖22 = trace(ββTββT ) = ‖β‖22trace(ββT ) = ‖β‖42.

The theoretical risk is

R(β) = −1

2
βTΣ0β +

1

4
‖β‖42.

6.5.1 Two-point margin and two point inequality for sparse
PCA

By straightforward differentiation

Ṙ(β) = −Σ0β + ‖β‖22β.

The minimizer β0 of R(β) satisfies Ṙ(β0) = 0, i.e.,

Σ0β
0 = ‖β0‖22β0.

Indeed, with β0 = φmaxq
0

Σ0β
0 = φmaxΣ0q

0 = φ3
maxq

0

= ‖φmaxq0‖22φmaxq
0 = ‖β0‖22β0.

We moreover have

R̈(β) = −Σ0 + ‖β‖22I + 2ββT ,
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with I denoting the p× p identity matrix.

Let now the spectral decomposition of Σ0 be

Σ0 := QΦ2QT ,

with Φ = diag(φ1 · · ·φp), φ1 ≥ · · · ≥ φp ≥ 0, and with Q = (q1, . . . , qp),
QQT = QTQ = I. Thus φmax = φ1 and q0 = q1. We assume the following
spikiness condition.

Condition 6.5.1 For some ρ > 0,

φmax ≥ φj + ρ, ∀ j 6= 1.

Let, for β̃ ∈ Rp, Λmin(R̈(β̃)) be the smallest eigenvalue of the matrix R̈(β̃).

Lemma 6.5.1 Assume Condition 6.5.1 and suppose that 3η < ρ. Then for all
β̃ ∈ Rp satisfying ‖β̃ − β0‖2 ≤ η we have

Λmin(R̈(β̃)) ≥ 2(ρ− 3η).

Proof of Lemma 6.5.1 . Let β̃ ∈ Rp satisfy ‖β̃ − β0‖2 ≤ η. The second
derivative matrix at β̃ is

R̈(β̃) = −Σ0 + ‖β̃‖22I + 2β̃β̃T

= ‖β̃‖22
p∑
j=1

qjq
T
j −

p∑
j=1

φ2
jqjq

T
j + 2β̃β̃T

= (‖β̃‖22 − φ2
max)q1q

T
1 +

p∑
j=2

(‖β̃‖22 − φ2
j )qjq

T
j + 2β̃β̃T .

Since by assumption ‖β̃ − β0‖2 ≤ η, it holds that

‖β̃‖2 ≥ ‖β0‖2 − η = φmax − η.

It follows that
‖β̃‖22 ≥ φ2

max − 2ηφmax

and hence for all j ≥ 2

‖β̃‖22 − φ2
j ≥ 2ρφmax − 2ηφmax = 2(ρ− η)φmax.

Moreover, for all x ∈ Rp

(xT β̃)2 = (xT (β̃ − β0) + xTβ0)2

= (xT (β̃ − β0))2 + 2(xTβ0)(xT (β̃ − β0)) + (xTβ0)2

≥ (xTβ0)2 − 2φmaxη‖x‖22

and
xT (‖β̃‖22 − φ2

max)q1q
T
1 x ≥ −2ηφmax‖x‖22.
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We thus see that

xT R̈(β̃)x ≥ 2(xTβ0)2 − 4ηφmax‖x‖22 + 2(ρ− η)φmax

p∑
j=2

(xT qj)
2

≥ 2(ρ− η)φmax

p∑
j=1

(xT qj)
2 − 4ηφmax‖x‖22

= 2(ρ− 3η)φmax‖x‖22.

tu

By a two term Taylor expansion we have

R(β)−R(β′) = Ṙ(β′)T (β − β′) +
1

2
(β − β′)T R̈(β̃)(β − β′)

with β̃ an intermediate point. Hence the two point margin condition holds with
G(u) = 2(ρ − 3η)φmaxu

2 , u > 0, τ = ‖ · ‖2, and Blocal = B = {β′ ∈ Rp :=
‖β′ − β0‖2 ≤ η}.

6.5.2 Effective sparsity and dual-norm inequality for sparse PCA

We have seen in Subsection 6.5.1 that the (two-point) margin condition holds
with norm τ = ‖ · ‖2. Clearly for all S

‖β̃S‖1 ≤
√
s‖β̃‖2.

The effective sparsity depends only on β via its active set S := Sβ and does not
depend on L:

Γ2
‖·‖1(L, β, ‖ · ‖2) = |S|.

The empirical process is

[Rn(β′)−R(β′)]− [Rn(β)−R(β)] =
1

2
β′TWβ′ − 1

2
βWβ,

where W := Σ̂− Σ0. Thus∣∣∣∣[Rn(β′)−R(β′)]− [Rn(β)−R(β)]

∣∣∣∣ ≤ 2

∣∣∣∣βTW (β′ − β)

∣∣∣∣+ (β′ − β)TW (β′ − β)

≤ 2‖β′ − β‖1‖Wβ‖∞ + ‖β′ − β‖21‖W‖∞.

6.5.3 A sharp oracle inequality for sparse PCA

Theorem 6.5.1 (Sketch) Suppose the spikiness condition (Condition 6.5.1).
Let B := {β̃ ∈ Rp : ‖β̃ − β0‖2 ≤ η} where 3η ≤ ρ. Fix some β ∈ B. Let for
W = Σ̂− Σ0

λε ≥ 2‖Wβ‖∞ + ‖W‖∞.
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Let λ ≥ 8λε/δ Define λ := λ − λε and λ̄ := λ + λε + δλ. Furthermore, define
for S ⊂ {1, . . . , p}

δλMβ,S :=
λ2(1 + δ)2|S|
2(ρ− 3η)φmax

+ 8(R(β)−R(β0)) + 16λ‖β−S‖1.

Assume that Mβ ≤ 1. Then - under some additional assumptions (bounded
data) -

δλ‖β̂ − β‖1 +R(β̂) ≤ R(β) + λ̄2|S|/8 + 2λ‖β−S‖1.

Note that we did not provide a high probability bound for 2‖Wβ‖∞ + ‖W‖∞.
This can be done assuming for example a bound for ‖XT

1 ‖∞. The variable
X1β, β ∈ B, has a bounded second moment: IE(X1β)2 ≤ φ2

max(φmax + η)2.
One can then apply Dümbgen et al. [2010]. One then establishes the following
asymptotics.

Asymptotics For simplicity we take β = β0 and S = S0. Suppose p log p/n =
o(1), ‖X1‖∞ = O(1), Λmax = O(1) and 1/(ρ− 3η) = O(1). Then one may take
λ �

√
log p/n. Assuming s0

√
log p/n is sufficiently small (to ensureMβ0,S0 ≤ 1)

one obtains ‖β̂ − β0‖22 = OIP(s0 log p/n) and |β̂ − β0‖1 = OIP(s0

√
log p/n).
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