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Chapter 1

The Lasso

1.1 The linear model with p <n

Let X be an n X p input matrix and Y € R™ be an n-vector of responses. The
linear model is

Y = X8% +¢,

where 8° € R? is an unknown vector of coeflicients and ¢ € R" is a mean-zero
noise vector. This is a standard model in regression and X 8° is often called the
regression of Y on X. The least squares method, usually credited to Gauss, is
to estimate the unknown 3° by minimizing the Euclidean distance between Y
and the space spanned by the columns in X:

Bg = in |V — X3|3.
Prs = arg min | B2

The least squares estimator BLS is thus obtained by taking the coefficients of
the projection of Y on the column space of X. If X has full rank p we can write
it as

Brs = (XTx)"'xTy.

The estimated regression is then the projection vector
Xprs = X(XTx)1xTy.

If the entries €1, ..., €, of the noise vector € are uncorrelated and have common
variance 03 one may verify that

E| X (bus — 8°)3 = agp.

We refer to the normalized quantity || X (Brs — 8°)||3/n as the prediction error:
if we use X S,g as prediction of a new (unobserved) response vector Yyew when
the input is X, then on average the squared error made is

E||Yoew — (XBL8)|3/n =E| X (BLs — 8°)13/n + op.

5



6 CHAPTER 1. THE LASSO

The first term in the above right-hand side is due to the estimation of 5 whereas
the second term oF is due to the noise in the new observation. We neglect the
unavoidable second term in our terminology. The mean prediction error is then

P number of parameters

E||X (Bus — B°)|3/n = of x — =0 x

number of observations’

In this monograph we are mainly concerned with models where p > n or even
p > n. Clearly, the just described least squares method then breaks down.
This chapter studies the so-called Lasso estimator B when possibly p > n. Aim
is to show that

XG5~ )1/ = Op (257 (1)

where sg is the number of non-zero coefficients of 8% (or the number of in
absolute value “large enough” coefficients of 3°). The active set Sy := {j :
ﬁ? # 0} is however not assumed to be known, nor its size so = |Sp].

1.2 The linear model with p > n

Let Y € R™ be an n-vector of real-valued observations and let X be a given n xp
design matrix. We concentrate from now on mainly on the high-dimensional
situation, which is the situation p > n or even p > n.

Write the expectation of the response Y as
% :=EY.

The matrix X is fixed in this chapter, i.e., we consider the case of fixed design.
The entries of the vector f° are thus the (conditional) expectation of Y given
X. Let e := Y — fY be the noise term.

The linear model is
fO — Xﬂo

where (Y is an unknown vector of coefficients. Thus this model assumes there
is a solution B° of the equation f° = XA3°. In the high-dimensional situation
with rank(X) = n this is always the case: the linear model is never misspec-
ified. When there are several solutions we may take for instance a sparsest
solution, that is, a solution with the smallest number of non-zero coefficients.
Alternatively one may prefer a basis pursuit solution (Chen et al. [1998])

B0 .= argmin{|ﬁ||1 : XB = fo}

where [|8]|1 := >__, |8;| denotes the £1-norm of the vector 3. We do not express
in our notation that basis pursuit may not generate a unique solution®.

! A suitable notation that expresses the non-uniqueness is 8° € argmin{||8|1 : X8 = f°}.
In our analysis, non-uniqueness is not a major concern.
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Aim is to construct an estimator B of 8%, When p > n the least squares
estimator fArg will not work: it will just reproduce the data by returning the
estimator X BLS =Y. This is called an instance of overfitting. Least squares
loss with an ¢;-regularization penalty can overcome the overfitting problem.
This method is called the Lasso. The Lasso estimator B is presented in more
detail in (1.3) in Section 1.4.

1.3 Notation

For a vector v € R™ we use the notation ||[v||2 := vTv/n = ||v||3/n, where || - ||2
is the fo-norm. Write the (normalized) Gram matrix as 3 := X7 X/n. Thus
IXBl% = 8758, B € R.

For a vector 3 € RP we denote its £1-norm by [|8]|1 := 3°¥_,; |B;]. Its Lec-norm
is denoted by ||f|loc := maxi<j<p |5;,

Let S C {1,...,p} be an index set. The vector fg € RP with the set S as
subscript is defined as

Bis=pB{ie S} j=1....p. (1.2)

Thus Sg is a p-vector with entries equal to zero at the indexes j ¢ S. We will
sometimes identify Sg with the vector {f;},cs € RISl The vector 8_g has all
entries inside the set S set to zero, i.e. f_g = fBgec where S¢={j € {1,...,p}:
j ¢ S} is the complement of the set S. The notation (1.2) allows us to write
B =pBs+B-s.

The active set Sg of a vector 3 € RP is Sz := {j : B; # 0}. For a solution (°
of XB° = 9, we denote its active set by Sy := Sgo and the cardinality of this
active set by sg := |So|.

The j-th column of X is denoted by X, j =1,...,p (and if there is little risk
of confusion we also write X; as the i-th row of the matrix X, i = 1,...,n).
For a set S C {1,...,p} the matrix with only columns in the set S is denoted
by Xg := {X,}jes. To fix the ordering of the columns here, we put them
in increasing in j ordering. The “complement” matrix of Xg is denoted by
X_5:={Xj}j¢s.- Moreover, for j € {1,...,p}, we let X ; := { Xy }r;.

1.4 The Lasso, KKT and two point inequality

The Lasso estimator (Tibshirani [1996]) /3 is a solution of the minimization
problem

A~

B arg %{\\Y—Xﬂu%»umwl}. (1.3)

This estimator is the starting point from which we study more general norm-
penalized estimators. The Lasso itself will be the object of study in the rest
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of this chapter and in other chapters as well. Although “Lasso” refers to a
method rather than an estimator, we refer to 3 as “the Lasso”. It is generally
not uniquely defined but we do not express this in our notation. This is a
justified in the sense that the theoretical results which we will present will hold
for any solution of minimization problem (1.3). The parameter A > 0 is a
given tuning parameter: large values will lead to a sparser solution B , that is,
a solution with more entries set to zero. In an asymptotic sense, A will be

“small”, it will generally be of order \/log p/n.

This Lasso B satisfies the Karush-Kuhn-Tucker conditions or KKT-conditions
which say that
XT(y — XB)/n= X2 (1.4)

where 2 is a p-dimensional vector with [|Z||oc < 1 and with 2; = sign(Bj) if
Bj # 0. The latter can also be written as

6 =B

The KKT-conditions follow from sub-differential calculus which defines the sub-
differential of the absolute value function z — |x| as

x| = {sign(x){z # 0} + [-1, 1{z = 0}.
Thus, £ € 9||8]1.

The KKT-conditions may be interpreted as the Lasso version of the normal
equations which are true for the least squares estimator. The KKT-conditions
will play an important role. They imply the almost orthogonality of X on the
one hand and the residuals Y — X B on the other, in the sense that

IXT(Y = XB)loo/n < A

Recall that A will (generally) be “small”. Furthermore, the KKT-conditions
are equivalent to: for any 8 € R?

B =B XT(Y = XB)/n < AlIBlh = AllBlh-

We will often refer to this inequality as the two point inequality. As we will see

in the proofs this is useful in conjunction with the two point margin: for any £
and 3

2(8' = BT — 5%) = 1X(B' = A7 — 1X(B = BN + 1X (8" = B3
Thus the two point inequality can be written in the alternative form as

1Y = XBI% = Y = XBI2 + 1X(6 = B)II7 < 2lI8lh — 2|8l ¥ 8.

The two point inequality was proved more generally by [Giiler [1991], Lemma
2.2] and further extended by [Chen and Teboulle [1993], Lemma 3.2], see also
Lemma 3.3.1 in Section 3.3 or more generally Lemma 5.2.1 in Section 5.2.
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Another important inequality will be the conver conjugate inequality: for any
a,beR
2ab < a® + b2,

As a further look-ahead: in the case of loss functions other than least squares,
we will be facing convex functions that are not necessarily quadratic and then
the convex conjugate inequality is a consequence of Definition 5.2.2 in Section
5.2.

1.5 Dual norm and decomposability

As we will see, we will need a bound for the random quantity ¢’ X (B — 8% /n
in terms of || B — B°||1, or modifications thereof. Here one may apply the dual
norm inequality. The dual norm of || - ||; is the {oo-norm || - [|s. The dual norm
inequality says that for any two vectors w and

w8l < [[wllsllB1-

Another important ingredient of the arguments to come is the decomposability
of the ¢1-norm:

181 =118l + 11825l ¥ 5.
The decomposability implies what we call the triangle property:

1Bl = 181 < 11Bs = Bsll + 18-sllx = I8s]I

where 8 and ' are any two vectors and S C {1,...,p} is any index set. The
importance of triangle property is was highlighted in van de Geer [2001] in the
context of adaptive estimation. It has been invoked at first to derive non-sharp
oracle inequalities (see Bithlmann and van de Geer [2011] and its references).

1.6 Compatibility

We will need a notion of compatibility between the £;-norm and the Euclidean
norm || - ||,. This allows us to identify 8° to a certain extent.

Definition 1.6.1 (van de Geer [2007], Biihlmann and van de Geer [2011]) For
a constant L > 0 and an index set S, the compatibility constant is

&@ﬁw—mm{WW&~Xﬂmﬁ:Wﬂrﬁ,w4m§L}

We call L the stretching factor: gemerally L > 1.
Example 1.6.1 Let S = {j} be the j-th variable for some j € {1,...,p}. Then

&@&m=mm“&—XﬁwﬁrwewlwmmSL}
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Note that the unrestricted minimum min{||X; — X_jvj|ln : 7 € RP71} is
the length of the anti-projection of the first variable X; on the space spanned
by the remaining variables X_;. In the high-dimensional situation this unre-
stricted minimum will generally be zero. The {y-restriction ||vj|1 < L poten-
tially takes care that the (y-restricted minimum ¢(L,{j}) is strictly positive.
The 01 -restricted minimization is the dual formulation for the Lasso which we
consider in the next section.

The compatibility constant <;A52 (L, S) measures the distance between the signed
convex hull of the variables in X¢ and linear combinations of variables in X_g
satisfying an ¢;-restriction (that is, the latter are restricted to lie within the
signed convex hull of L x X_g). Loosely speaking one may think of this as an
¢1-variant of “(1— canonical correlation)”.

For general S one always has ¢2(L, {j}) > ¢2(L, S)/|S| for all j € S. The more
general case S C S is treated in the next lemma. It says that the larger the set
S the larger the effective sparsity® |S|/$*(L, S).

Lemma 1.6.1 For all L and S C S it holds that

181/9*(L, S) < |S|/d*(L, S).

Proof of Lemma 1.6.1. Let

| #(L.S
IXB]7 = mm{HXﬁHi  1Bsll =1, [18-s]h < L} = (ysy)

Then ||bs|ly > ||bs|l = 1 and [|b_s|l < |[b_g|li < L. Thus, writing c = b/||bs]|1,
we have |les|ly = 1 and |jc_g|li = |[b_s||1/||bs|ls < [[b_s|lz < L. Therefore

IXBI2 = feslBlxel2
ubsn%min{nmn% 1Bslh =1, 18-k < L}

= |bsl3d*(L, 5)/IS| = $*(L, 5)/1S].

Y

1.7 A sharp oracle inequality

Let us summarize what are the main ingredients of the proof of Theorems 1.7.1
and 1.8.1 below:

- the two point margin

- two point inequality

2or non-sparsity actually
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- the dual norm inequality

- the triangle property, or decomposability
- the convex conjugate inequality

- compatibility

Finally, to control the f,-norm of the random vector X' e occurring below in
Theorem 1.7.1 (and onwards) we will use

- empirical process theory,

see Lemma 4.2.1 for the case of Gaussian errors €. See also Corollary 6.1.1 for
a complete picture in the Gaussian case.

The paper Koltchinskii et al. [2011] (see also Koltchinskii [2011]) nicely com-
bines ingredients such as the above to arrive at general sharp oracle inequalities
for nuclear-norm penalized estimators for example. Theorem 1.7.1 below is a
special case of their results. The sharpness refers to the constant 1 in front of

| X(B8 — BY)]|2 in the right-hand side of the result of the theorem.
Theorem 1.7.1 (Koltchinskii et al. [2011]) Let \. satisfy

Ae > ||XT€||OO/’I’L.

Define for A > A
A=A =X, A=A+ A

and

L:= X/

Then

XG5 = 1 < mind iy 13 - 5901 + 81/ (L. 5) .
Theorem 1.7.1 follows from Theorem 1.8.1 below by taking there § = 0. It also
follows the general case given in Theorem 5.5.1. However, a reader preferring to
first consult a direct derivation before looking at generalizations may consider
the the proof given in Subsection 1.11.3. We call the set of 8’s over which
we minimize, as in Theorem 1.7.1 “candidate oracles”. The minimizer is then
called the “oracle”. Note that the stretching factor L is indeed larger than one
and depends on the tuning parameter and the noise level A.. If there is no
noise, L =1 (as then A = 0). (However, with noise, it is not always a must to
take L > 1.)

1.8 Including a bound for the /;-error and allowing
many small values.

We will now show that if one increases the stretching factor L in the com-
patibility constant one can establish a bound for the ¢;-estimation error. We
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moreover will no longer insist that for candidate oracles 8 it holds that S = Sg
as is done in Theorem 1.7.1, that is, we allow § to be non-sparse but then its
small coefficients should have small /1-norm. The result is a special case of the
results for general loss and penalty given in Theorem 5.5.1.

Theorem 1.8.1 Let )\, satisfy
Ae > HXTeHoo/n.
Let 0 < § < 1 be arbitrary and define for A > A,

Ai=A— A, A=A+ A+ 00X

and _
A
Li=——.
(1-0)A
Then for all B € RP and all sets S
25015 — Bl + 13— A2 < 15— 2+ 5L axjg gl (19)
g "= s T

The proof of this result invokes the ingredients we have outlined in the previous
sections:

- the two point margin,

- two point inequality,

- the dual norm inequality,

- the triangle property,

- the convex conjugate inequality

- compatibility.

Similar ingredients will be used to cook up results with other loss functions
and regularization penalties. We remark here that for least squares loss one
also may take a different route where the “bias” and “variance” of the Lasso is
treated separately.

Proof of Theorem 1.8.1.
o If

(B=B)"S(3 = 8°) < =3AlIB = Bll1 + 2\[1B-slh
we find from the two point margin
20016~ B [la+ X5~ 8l

= 20Al18 = Bl + 1X(8 = BO)IZ — I1X(8 = B)II% +2(3 = B)TS(B - 5°)
1X (8= B+ 4M18-s]h

IN

and we are done.

e From now on we may therefore assume that

(B—B)TS(B - B%) = =618 — Bl + 2A]1B-s])1.-
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By the two point inequality we have
(B=B8)"8(8 8% < (B~ B)TXTe/n+ Bl — Al
By the dual norm inequality

(B —B)"XTel/n < AcllB - Bl
Thus

(8- B)"%( —B°)

8
< AlB =Bl + MBl = AlBIh
< AlBs = Bsllt + AcllB-sll1 + AcllB-sll1 + AlIB[l1 — All Bl

By the triangle property and invoking A = A — A this implies
(B=B)TS(B — %) + AlB=sllt < (A + A 1Bs = Bsll + (A + A B=s]x

and so

(B = B)"S(B8 = 8% + AlB-s — Bslli < A+ A)1Bs — Bsl1 + 2 B-s]lr-

Hence, invoking A = X\ 4+ Ac + 6,

(B—B)"S(B - B° + AllB—s — Bsll1 + dAllBs — Bsllx (1.6)

< M|Bs = Bsll + 2A]B-s])1.
Since (8 — B)T2(B — B°) = =08 — Bll1 + 2A[|B-s|1 this gives
(1= 8)AIB-s — B-sll1 < AlBs — Bslh
or R )
18-s — B-sll1 < L[|Bs — Bs|l1-
But then by the definition of the compatibility constant
165 = Bsllt < VISHNX (B = B)lln/S(L, ). (1.7)

Continue with inequality (1.6) and apply the convex conjugate inequality:
(B—B)"S(B - B° + AllB-s — Bsll1 + dAllBs — Bl

< AVISIIX (B = B)lln/S(L, S) + 2\ 8-slh
1 A28 1o, 4 )

< 5= + =1 X(B = B)|I2 + 2\ B=s]l1-
AT LAl R
Invoking the two point margin

28 - B8)"E(8 - 8% = 1X(6 = 817 = 1X (B8 = B)I% + 11X (B = B)lIa,

we obtain

1X (B — B2 +2))8-s — B-sll1 + 20| Bs — Bsll1
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<X (8= BO)7 + NIS1/$*(L, S) + 4X[|B-s]1-
O

What we see from Theorem 1.8.1 is firstly that the tuning parameter A should
be sufficiently large to “overrule” the part due to the noise || X%¢||o/n. Since
| X7€||oo/m is random, we need to complete the theorem with a bound for this
quantity that holds with large probability. See Corollary 6.1.1 in Section 6.1 for
this completion for the case of Gaussian errors. One sees there that one may
choose A < y/log p/n. Secondly, by taking 3 = 3° we deduce from the theorem
that the prediction error || X (3 — %2 is bounded by X2|So|/¢?(L, Sp) where
Sp is the active set of 8°. In other words, we reached the aim (1.1) of Section
1.1, under the conditions that the part due to the noise behaves like \/logp/n

and that the compatibility constant gp(L, Sp) stays away from zero.

A third insight from Theorem 1.8.1 is that the Lasso also allows one to bound
the estimation error in || - |[;-norm, provided that the stretching constant L
is taken large enough. This makes sense as a compatibility constant that can
stand a larger L tells us that we have good identifiability properties. Here is
an example statement for the /1-estimation error.

Corollary 1.8.1 As an example, take 8 = ° and take S = Sy as the active
set of B° with cardinality so = |So|. Let us furthermore choose A\ = 2\, and
0 = 1/5. The following ly-sparsity based bound holds under the conditions of
Theorem 1.8.1:

)\530

3 — g9 Co——,
18 =B°1 < 0(152(4,50)

where Cy = (16/5)2(5/2).

Finally, it is important to note that we do not insist that 5 is sparse. The result
of Theorem 1.8.1 is good if ° can be well approximated by a sparse vector 3 or
by a vector 8 with many smallish coefficients. The smallish coefficients occur
in a term proportional to ||f_g|/1. By minimizing the bound over all candidate
oracles § and all sets S one obtains the following corollary.

Corollary 1.8.2 Under the conditions of Theorem 1.8.1, and using its nota-
tion, we have the following trade-off bound:

20013 — B°1 + | X (B — 8|12

N8|

< min  min {25A||B—/>’°||1+IIX(ﬁ—ﬁ°)||i+ 5L

~ BERP SC{1,...p} +4)\HB_SH1}' (18)
We will refer to the minimizer (8*, Sx) in (1.8) as the (or an) oracle. Corollary
1.8.2 says that the Lasso mimics the oracle (5%, S). It trades off approximation
error, sparsity and the ¢;-norm ||S_gl|1 of smallish coefficients. In general, we
will define oracles in a loose sense, not necessarily the overall minimizer over all
candidate oracles and furthermore constants in the various appearances may be
(somewhat) different.
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One can make two types of restrictions on the set of candidate oracles. The first
one, considered in the next section (Section 1.9) requires that the pair (3, 5)
has S = Sg so that the term with the smallish coefficients ||5_g||1 vanishes. A
second type of restriction is to require 3 = Y but optimize over 9, i.e., the
consider only candidate oracles (3°,.9). This is done in Section 1.10.

1.9 The /;-restricted oracle

Restricting ourselves to candidate oracles (3, S) with S = Sg in Corollary 1.8.2
leads to a trade-off between the the fi-error || — 8°||1, the approximation
error || X (3 — B°)||2 and the sparseness |S| (or rather the effective sparseness
|S|/¢%(L,S)). To study this let us consider the oracle 8* which trades off
approximation error and (effective) sparsity but is meanwhile restricted to have
an ¢1-norm at least as large as that of 8°.

Lemma 1.9.1 Let for some X\ the vector 5* be defined as
B* = argmin{HX(ﬁ — BO% + A2|S61/8%(L, Sp) = [1Blh > Hﬁolll}'

Let Sy = Sg« = {j: B # 0} be the active set of B*. Then

A" = Pl S X" = P+ 25 =05

Proof of Lemma 1.9.1. Since ||3°||; < ||8*|l1 we know by the /;-triangle
property
1825, Il < 118" = B3, Il1-

Hence by the definition of the compatibility constant and by the convex conju-
gate inequality

2AX B = Bn x50 g0y2 4 15+
= = - nt o
L5 X =t g

O

M B* =Bl < 218"~ B8, lIr <

From Lemma 1.9.1 we see that an ¢;-restricted oracle 8* that trades off approx-
imation error and sparseness is also going to be close in ¢1-norm. We have the
following corollary for the bound of Theorem 1.8.1.

Corollary 1.9.1 Let
Ae > | X €] oo /n.

Let 0 < § < 1 be arbitrary and define for A > A,
A= A=A, Ai= A+ A +6A
and

S (1=0)N
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Let the vector 8* with active set Sy be defined as in Lemma 1.9.1. We have

5 430 A+ 200 NI A%[S4| )
B - < (P55 ) (1006 - 00 + e ).

1.10 Weak sparsity

In the previous section we found a bound for the trade-off in Corollary 1.8.2
by considering the ¢i-restricted oracle. In this section we take an alternative
route, where we take in Theorem 1.8.1 candidate oracles (3,.5) with the vector
B equal to B° as in Corollary 1.8.1, but now S not necessarily equal to the
active set Sy := {j : ﬁg # 0} of 8°. We define

p
o= I8 (L9)
j=1

where 0 < r < 1. The constant p, > 0 is assumed to be “not too large”. This
is sometimes called weak sparsity as opposed to strong sparsity which requires
“not too many” non-zero coefficients

80 := #{ﬁjo # 0}.
Observe that this is a limiting case in the sense that

lim p!. = sg.
T‘M)pr 0

Lemma 1.10.1 Suppose 3° satisfies the weak sparsity condition (1.9) for some
0<r<1andp,>0. Then for any A and X

5\2 S 55\2(1—7"))\7‘ T
mm{A‘ +4A\\ﬁosul} < TN
5 L¢*(L,9) ¢*(L, S)

where Sy == {j : |ﬁ§)] > A2/\} and assuming ¢(L,S) < 1 for any L and S (to
simplify the expressions).

Proof of Lemma 1.10.1. Define ), := A?/\. Then S, = {j : |B;-)] > A} We

get B
| < APy = NN
Moreover
1825, Il < A7 pf = NN ol < NN 5/ G2(L, S,
since by assumption ¢%(L, S,) < 1. O

As a consequence, we obtain bounds for the prediction error and ¢q-error of the
Lasso under (weak) sparsity. We only present the bound for the ¢;-error.

We make some arbitrary choices for the constants: we set A = 2A\. and we
choose § = 1/5.
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Corollary 1.10.1 Assume the {,-sparsity condition (1.9) for some 0 < r < 1
and p, > 0. Set

Se={j: IB)] >3A}.
Then for Ae > | XT€||loo/n and X = 2)., we have the {,.-sparsity based bound
18 = 8% < CoATT 0} /6%(4, S.).

assuming that (L, S) < 1 for any L and S. The constant C,, = (16/5)*17) (52 /2r)
depends only on 7.

1.11 Complements

1.11.1 An alternative bound for the /¢;-error

Theorem 5.6.1 provides an alternative (and “dirty” in the sense that not much
care was paid to optimize the constants) way to prove bounds for the ¢;-error.
This route gives a perhaps clearer picture of the relation between the stretching
constant L and the parameter ¢ controlling the ¢;-estimation error.

Corollary 1.11.1 (Corollary of Theorem 5.6.1.) Letﬁ’ be the Lasso

A~

= inq ||V — XB||2 +2 :
B= ang yin { | - X612 + 271311}

Take Ae > || XTe||oo/n and X\ > 8)\./5. Then for all B € RP and sets S

2X2(1 + )28
$2(1/(1-14),9)

|3 = Bl < +4)X (8~ B%)II7 + 161 B-s]1-

1.11.2 When there are coefficients left unpenalized

In most cases one does not penalize the constant term in the regression. More
generally, suppose that the set of coefficients that are not penalized have indices
U c{1,...,p}. The Lasso estimator is then

= i & — X 2 + 2)\ —U .
6 a‘rgérellm%{n ﬁ“n H/B Hl}
The KKT-CODditiOHS are Now

XY = XB)/n+ ey =0, |2-vllo < 1, 2Lyfov = |B-ulh-
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1.11.3 A direct proof of Theorem 1.7.1.

Fix some S € RP. The derivation of Theorem 1.7.1 is identical to the one of
Theorem 1.8.1 except for the fact that we consider the case d =0 and S = Sg.
These restrictions lead to a somewhat more transparent argumentation.

o If
(B-B)"2(B-8" <0
we find from the two point margin
IX(B = B2 = 1IX (8 = B%)In = 11X (B = B)lI +2(8 = B)"S(8 - 8°)
<X (8- 83
Hence then we are done.
e Suppose now that R -
(B=8)"S(8~ 8% 0.
By the two point inequality
(B—=B)"XT(Y = XB)/n < N|Bll — AllBl1-
AsY = XB% 4 ¢
(B=B)TS(B =B+ MBI < (B—B8)"XTe/n+ A8
By the dual norm inequality
(B=8)"XTe|/n < (| X elloo/n)lIB = Bl < AcllB = Bl

Thus R o A X
(B—=B8)T2(8—=B%) + MBI < AcllB = Bl + AllBIl-

By the triangle property this implies
(B=8)"(B = 8% + (A= A)1B=sll < (A +A)lIBs = B]l1-
or ) o ) o
(5= B)"8(B — 8% + Al B-sll < NBs — Bl (1.10)

Since (8 — B)T3(8 — 8°) > 0 this gives

I18=slly < (A/M)1Bs = Bl = LI Bs — Blx-
By the definition of the compatibility constant ¢2(L, S) we then have

165 = Bl < VISIIX (B = B) /(L ). (1.11)

Continue with inequality (1.10) and apply the convex conjugate inequality
(B=B)"8B -9 +Al Bos I

< MWISIIX(B = B)|ln/d(L, S)
T NS| 1 s
< s pas SIX (B =Bl
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Since by the two point margin
208 — BB - B) = 1IX(B = B = 1IX (B = B2 + 11X (B = B)llz,
we obtain

1X(8 = B9 + 22185l < 1X(8 = BO)I7 + A2IS1/6*(L, 9).

19
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Chapter 2

The square-root Lasso

2.1 Introduction

Consider as in the previous chapter the linear model
Y =X8°+e

In the previous chapter we required that the tuning parameter A for the Lasso
defined in Section 1.4 is chosen at least as large as the noise level \c where \¢
is a bound for ||’ X ||oo/n. Clearly, if for example the entries in € are i.i.d. with
variance 08, the choice of A will depend on the standard deviation oy which will
usually be unknown in practice. To avoid this problem, Belloni et al. [2011]
introduced (and studied) the square-root Lasso

3= inq Y —X :
Bo= ang yin {1 - X6}, + ol 9 }

Again, we do not express in our notation that the estimator is in general not
uniquely defined by the above inequality. The results to come hold for any
solution.

The square-root Lasso can be seen as a method that estimates 5° and the noise

variance 0(2) simultaneously. Defining the residuals € := Y — X B and letting
62 ;= ||€||? one clearly has
5 2 : Y - X5z
,0%) =ar min — 4+ 0+ 2 2.1
(6% =arg _min, {IF= it e

(up to uniqueness) provided the minimum is attained at a non-zero value of 0.

We note in passing that the square-root Lasso is not a quasi-likelihood estima-
tor as the function exp[—2%/0 — o], z € R, is not a density with respect to a
dominating measure not depending on o2 > 0. The square-root Lasso is more-
over not to be confused with the scaled Lasso. See Section 2.7 for our definition
of the latter. The scaled Lasso as we define it there is a quasi-likelihood esti-
mator. It is studied in e.g. the paper Sun and Zhang [2010] which comments

21
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on Stédler et al. [2010]. In their rejoinder Stéadler et al. [2010] the name scaled
Lasso is used. Some confusion arises as for example Sun and Zhang [2012] call
the square-root Lasso the scaled Lasso.

2.2 KKT and two point inequality for the square-
root Lasso

When & > 0 the square-root Lasso B satisfies the KKT-conditions

XT(Y = XB)/n
1Y = X3

= Ao? (2.2)

where ||2]|loo < 1 and 2; = sign(6;) if §; # 0.

These KKT-conditions (2.2) again follow from sub-differential calculus. Indeed,
for a fixed o > 0 the sub-differential with respect to 3 of the expression in curly
brackets given in (2.1) is equal to

2XT(Y - XB)/n

with, for j = 1,...,p, z;(B) the sub-differential of 3; — |3;|. Setting this to
zero at (f3,0) gives the above KKT-conditions (2.2).

+ 2)\02(5)

2.3 A proposition assuming no overfitting

If ||é]|, = O the square-root Lasso returns a degenerate solution which overfits.
We assume now that [|€]|,, > 0 and show in the next section that this is the case
under /;-sparsity conditions.

We define .
oo IX7ele
nll€fln
A probability inequality for R for the case of normally distributed errors is
given in Lemma 4.2.2. See also Corollary 6.1.2 for a complete picture for the

Gaussian case.

Proposition 2.3.1 Suppose |||, > 0. Let R < R for some constant R > 0.
Let )y satisfy
Mollélln = Rllelln-

Let 0 < 6 < 1 be arbitrary and define
Alelln = Xolléln = Rllellns Aullelln := Aolléln + Rllelln + SALlelln

and A
A

~ .

(1-0)AL
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Then

26018 = Bl llelln + 11X (B = BO)I7

< . : 3 20 _q0y(2

< min {20005 - il + X0~ )1
A lelZ1S| : }
% + 4)\ €lln _ .
2(1.9) olléllnllB—sllx

Proof of Proposition 2.3.1. The estimator B satisfies the KKT-conditions
(2.2) which are exactly the KKT-conditions (1.4) but with A replaced by Ao||€||r.
This means we can recycle the proof of Theorem 1.8.1. g

2.4 Showing the square-root Lasso does not overfit

Proposition 2.3.1 is not very useful as such as it assumes ||é||,, > 0 and depends
also otherwise on the value of ||€[|,,. We therefore provide bounds for this
quantity.

Lemma 2.4.1 Let Ay be the tuning parameter used for the square-root Lasso.
Suppose that for some 0 <n <1, some R >0 and some o > 0, we have

)\0(1 — 77) Z R
and

Ml /2 < 2(\/1 TR - 1). (2.3)

Then on the set where R < R and ||e||,, > o we have

ella/llelln — 1' <.

The constant /1 + (7/2)? — 1 is not essential, one may replace it by a prettier-
looking lower bound. Note that it is smaller than (1/2)? but for 7 small it is
approximately equal to (7/2)2. In an asymptotic formulation, say with i.i.d.
standard normal noise, the conditions of Lemma 2.4.1 are met when ||3°|; =

o(y/n/logp) and \g < /logp/n is suitably chosen.

The proof of the lemma makes use of the convexity of the least-squares loss
function and of the penalty.

Proof of Lemma 2.4.1. Suppose R < R and |lelln > o. First we note that
the inequality (2.3) gives

Dol /el < 2( VI @22 1)
For the upper bound for ||€||,, we use that

1elln + AollBllx < lelln + Aoll 5%l
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by the definition of the estimator. Hence

lln < el + All8 < [1 n 2(¢1 T - 1)} lelln < @+ D)l

For the lower bound for ||é||,, we use the convexity of both the loss function and
the penalty. Define
nll€lln

" lleln + 1X(B = )

Note that 0 <t < 1. Let Bt be the convex combination Bt = tB + (1 —1)8°.
Then

el X (8 = 8l
el + X3 = )

Define & := Y — X ;. Then, by convexity of || - ||, and || - |1,

1X (B = 8%)lln = ¢ X (B = 8%l = < 7lelln-

1eclln + AollBell < tllélln + trollBll1 + (1 = t)llelln + (1 = £)Aoll 811

< |lelln + Aol B2

where in the last step we again used that 8 minimizes |Y — X3, + Ao||8]|1-
Taking squares on both sides gives

lecl + 2X0ll Bell el + ABNBNT < llell? + 220l Bllallelln + ANB°MT.  (2.4)

But

lells — 26" X (B = 8%)/n + 1 X (B = )7
lellz = 2R3 = Bl lelln + 1 X (B = )17
lell? = 2R1Bellullelln = 2RIBllelln + 11X (B: = 87

e

AV

Moreover, by the triangle inequality

€elln > Nlelln = 1X (B = B2 ln = (1 = n)llel|n-
Inserting these two inequalities into (2.4) gives

v = 2R[I8°l1 ]l ell
+ X B = 87 + 2001 = ) Bellvllelln + AFl B¢ 17
lell? + 220181 llelln + ASIIA°M1

lell?, — 2RI el

@)

IN

which implies by the assumption A\g(1 —n) > R

IX(Be = 8% < 2000 + R)IB°llell + A3IIA°I
< 4ol Bl llell + A3N8°0E
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where in the last inequality we used R < (1 — 7)Ao < Ag. But continuing we
see that we can write the last expression as

Dol 8 llelln + A2IA2 = ((Aouﬁoul/\enun Lo 4) el

Again invoke the ¢;-sparsity condition

A/ el < z(ﬁ T - 1)

to get
2 > _ T e
(Calolsllenlh + 22 = 4) Il < 1l

We thus established that

IX (B~ %) < el

Rewrite this to R
nlellnll X (8 = B)n__ nllelln

nllelln + 1X (B = Bl ~ 2
and rewrite this in turn to

)

nllelln , allellall X5 = 5l
2 2

ellall X (B = 8%l <

or )
1(8 = 8%l < nllelln-

But then, by repeating the argument, also

1elln = Nlelln = 11X (B = B%)ln = (1 = n)llelln-

2.5 A sharp oracle inequality for the square-root Lasso

We combine the results of the two previous sections.

Theorem 2.5.1 Assume the {1-sparsity (2.3) for some 0 <n <1 and o > 0,

1.e.
salllh /o < 2(VIF 2R - 1)
Let )y satisfy for some R > 0
Xo(l—mn) > R.
Let 0 < 6 < 1 be arbitrary and define

A0 = AO(]' - 77) - Ra
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5\0 = )\0(1+T])+R+5A()

and ~
Ao

BARNCEITY

Then on the set where R < R and llelln > o, we have

20018 — BOlillelln + 1X(B — 812
< min mm{mo||ﬁ—/30|l||e||n + X8 - B2

T Se{l,...,p} BERP
A3LS] el

22(L, S) +4Ao(1+n)\eHnHBS||1}, (2.5)

Proof of Theorem 2.5.1. This follows from the same arguments as those
used for Theorem 1.8.1, and inserting Lemma 2.4.1. ad

The minimizer (5*,Ss) in (2.5) is again called the oracle and (2.5) is called
an oracle inequality. The paper Sun and Zhang [2013] contains (among other
things) similar results as Theorem 2.5.1, although with different constants and
the oracle inequality shown there is not a sharp one.

2.6 A bound for the mean /;-error

It is of interest to have bounds for the mean ¢;-estimation error E|| B — B[4
(or even for higher moments E||3 — 8°||7 with m > 1). Such bounds are will
be important when aiming at proving so-called strong asymptotic unbiased-
ness of certain (de-sparsified) estimators, which in turn is invoked for deriving
asymptotic lower bounds for the variance of such estimators. We refer to

Lemma 2.6.1 Suppose the conditions of Theorem 2.5.1. Let moreover for
some constant ¢(L,S) >0, T be the set

T :={R<R,||e]ln > 7, 6(L,S) > ¢(L,S)}.
Let (for the case of random design)
IX5)1* :=E| X85, 5 <R,

Define (as in (2.5))

. : . _ a0 M

= s I+ gy
olSloo 4Ao(1+n)HB_sH1}
256 (L, S) 20 '
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Define moreover

2(0\/1 + (n/2)? - 1) +1
Gi= L PYAT) + " P(T°).

Then R
E[8— 801 < + -

In an asymptotic formulation and with fixed design (where ¢(L, ) is fixed), one
can choose R and ¢ large such that IP(7¢) = O(p~7") for some 7 > 0, but such
that the bound 7, for ||3 — 8°|); is only effected by this in terms of constants.
For p large the leading term in the bound 7, + ¢, for ]EHB — B9y is then n,. In
other words, the bound in probability for |3 — 3°||1 is of the same order as the
bound in expectation.

To bound IP(7°) for the case of fixed design we refer to Lemma 4.2.2 in Section
4.2. Then, when for examplesy = o(d,/n/logp) (say) the overall conclusion is

E[I5 = 81 = o(n).
Similar conclusions hold under weak sparsity assumptions.

Proof of Lemma 2.6.1. Let T := {R < R, ||, > 7,¢(L,S) > o(L,S)}.
Then by Theorem 2.5.1 R
E|8 — 8°hily < .

Moreover, by the definition of /3’

1811 < Nelln/Xo0 + 8% < llelln/A0 + 2<0'v1 +(n/2)? - 1) /Xo-

It follows that

<5W_1>+1

Ao

lelln , 2
~ €lln
18— 8% < el

0
Therefore

VI+ /22 - 1) +1

Ao

2(0
Bl|5 — 5llre < STPVA(T) + P(T°) = Go.
2.7 Comparison with scaled Lasso

Fix a tuning parameter Ag > 0. Consider the Lasso with scale parameter o

Bto) = angmin{ 1Y =~ X2 + 27001811 .



28 CHAPTER 2. THE SQUARE-ROOT LASSO

the (scale free) square-root Lasso

by = axgmin{ Y X6+ Aol
and the scaled Lasso (Sun and Zhang [2012])
(B, &E) = argrg,ian{w +logo? + 2)\0(!5”1}.
Then one easily verifies that
o7 =Y = XBlI2 + X815 11
and that (3, = 3(6,). Moreover, if we define
62 1= IV — XAy
we see that By = B(6y).
Let us write the residual sum of squares (normalized by n~!) when using o as

scale parameter as R
5*(0) =Y = XB(o) |-

Moreover, write the penalized (and normalized) residual sum of squares plus
penalty when using o as scale parameter as

5%(0) == [|Y = XB(0)|7 + Aol B(o) 1.
Let furthermore
53 =Y = XByll5 + Mooyl Gl
and
o7 = Iy — XByll2.

The scaled Lasso includes the penalty in its estimator &f of the noise variance

02 = E|l¢|? (assuming the latter exists). The square-root Lasso does not

include the penalty in its estimator &ﬁ2 of 0(2). It obtains &? as a stable point of
the equation &112 = 62(6y) and the scaled Lasso obtains 62 as a stable point of

the equation 67 = 62(6,). By the mere definition of 52(c) and 62(c) we also

have &E = 5%(6%) and 67 = 6%(5,).

We end this section with a lemma showing the relation between the penalized
residual sum of squares and the inner product between response and residuals.

Lemma 2.7.1 It holds that
(o) = Y"(Y - XB(o))/n.

Proof of Lemma 2.7.1. We have
YI(Y = XB(0))/n = |[Y = XB(a)|I7 + 57 (0) X" (Y = XB(0))/n
and by the KKT-conditions (see (1.4))
BT (@)X (Y = XB(0))/n = Xoo|B(0) 1.
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2.8 The multivariate square-root Lasso

For bounds for the bias of the Lasso and also for the construction of confidence
sets we will consider the regression of X; on X_; (J being some subset of
{1,...,p}) invoking a multivariate version of the square-root Lasso. Here, we
use here a standard notation with X being the input and Y being the response.
We will then later replace X by X_; and Y by X .

The matrix X is as before an n X p input matrix and the response Y is now an
n X ¢ matrix for some ¢ > 1. For a matrix A we write

1A= 1Ayl
7.k

and we denote its nuclear norm by
HAHnuclear = trace((ATA)1/2).

We define the multivariate square-root Lasso

A~

B := argmBin{HY—XBHnudear/\/ﬁ—l—/\OHBHl} (2.6)

with A\g > 0 again a tuning parameter. The minimization is over all p X ¢
matrices B. We consider % := (Y — XB)T(Y — XB)/n! as estimator of the

noise co-variance matrix.

The KKT-conditions for the multivariate square-root Lasso will be a major
ingredient of later results. We present these KKT-conditions in the following
lemma in equation (2.7).

Lemma 2.8.1 We have

A . _ Ty _ ~1/2
(B,%) argBméI;O{trace<(Y XB)" (Y —XB)X >/n

)

+trace(21/2) + 2)\0||B||1}

where the minimization is over all symmetric positive definite matriz X (this
being denoted by ¥ > 0) and where it is assumed that the minimum is indeed
attained at some X > 0. The multivariate Lasso satisfies the KK T-conditions

XY —XB)S V2 /n = N2, (2.7)

where Z is a p X q matriz with | Z||ee < 1 and with Zk,j = sign(Bkd-) ifB;w- #0
(k:17"'7p7j:17"'7q)'

'In this subsection 3 is not the Gram matrix X7 X /n
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Proof of Lemma 2.8.1. Let us write, for a p x ¢ matrix B, the residuals as

Yp:= (Y — XB)T(Y — XB)/n. Let Yin(B) be the minimizer of
trace(X X 2) + trace(X1/?) (2.8)

over 3. Then X, (B) equals X 5. To see this we invoke the reparametrization
Q:= 212 g0 that /2 = Q. We now minimize

trace(XpQ) + trace(Q1)

over 0 > 0. The matrix derivative with respect to Q of trace(X52) is ¥p. The
matrix derivative of trace(27!) with respect to € is equal to —Q~2. Hence the
minimizer Qi (B) satisfies the equation

Y5 - Q2 (B)=0,

giving
Quin(B) = 572,

so that
Ymin(B) = Q22 (B) = ¥p.

min

Inserting this solution back in (2.8) gives 2trace(2}3/2) which is equal to 2||Y —
X Bl|puctear/v/n. This proves the first part of the lemma.

Let now for each 3 > 0, By, be the minimizer of
trace(SpX~Y2) + 2X0||B]|1.
By sub-differential calculus we have
XT(Y = XBs)S V% /n = M Zs

where HZEHOO < 1 and (Zg)k’j = sign((Bg)kJ) if (?E)k,j 75 0 (k = 1,...,p,
j=1,...q). The KKT-conditions (2.7) follow from B = Bs.. 0



Chapter 3

Structured sparsity

3.1 The -structured sparsity estimator

Like Chapter 1 this chapter studies the linear model with fixed design
Y =X8"+¢

where Y € R" is an observed response variable, X is a n X p input matrix,
B € RP is a vector of unknown coefficients and € € R™ is unobservable noise.
The Q-structured sparsity estimator is

8= arg min{HY X2+ m(ﬁ)},
BERP

with ©Q a given norm on RP. The reason for applying some other norm than
the ¢1-norm depends on the particular application. In this chapter, we have
in mind the situation of a sparsity inducing norm, which means roughly that
it favours solutions ,5’ with many zeroes structured in a particular way'. Such
generalizations of the Lasso are examined in Jenatton et al. [2011], Micchelli
et al. [2010], Bach [2010], Bach et al. [2012], Maurer and Pontil [2012], van de
Geer [2014] for example. The norm  is constructed in such a way that the
sparsity pattern in B follow a suitable structure.This may for example facilitate
interpretation.

This chapter largely follows Stucky and van de Geer [2015].

The question is now: can we prove oracle inequalities (as given in for example
Theorem 1.7.1) for more general norms 2 than the ¢;-norm? To answer this
question we first recall the ingredients of the proof Theorem 1.7.1.

- the two point margin

- the two point inequality

!For example the least-squares estimator with so-called nuclear norm penalization is for-
mally also a structured sparsity estimator. This will be considered in Section 6.4. The topic
of this chapter is rather norms which are weakly decomposable as defined in Definition 3.4.1.

31
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- the dual norm inequality

- the (¢1-)triangle property

- (¢1-)compatibility

- the convex conjugate inequality.

We will also need empirical process theory to bound certain functions of €. This
will be done in Chapter 4.

The convex conjugate inequality and two point margin have to do with the loss
function and not with the penalty. Since our loss function is still least squares
loss we can use these two ingredients as before. The other ingredients: two
point inequality, dual norm inequality, 2-triangle property and {2-compatibility
will be discussed in what follows.

3.2 Dual norms and KKT-conditions for structured
sparsity

The dual norm of €. is defined as

Q. = T RP,
(w) le%?gllw Bl, we

Therefore the dual norm inequality holds by definition: for any two vectors w
and

" 8| < Qu(w)2AB).

The sub-differential of €2 is given by

 [{weRr: Q. (w) <1} if =0
89(6)_{{106sz Qu(w) =1, w'B=Q(B)} HL#0

(Bach et al. [2012], Proposition 1.2). It follows that the (2-structured sparsity
estimator ( satisfies

Q(XT(Y = XB))/n < A
and if 3 # 0,

QXT(Y = XB)/n=x BTXT(Y — XB)/n=Q(B).

The KKT-conditions are

where Q,(2) < 1 and 273 = Q(3).
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3.3 Two point inequality

We call the result (3.1) below in Lemma 3.3.1 a two point inequality. See also
Lemma 5.2.1 which treats more general loss functions.

Lemma 3.3.1 Let B be the estimator

A~

B:wmﬁﬁ{w—xmi+%mwﬁ,
where pen : RP — R is a convex penalty. Then for any § € RP

(8= A" XT(Y = XB)/n < pen(8) — pen(B) (3.1)
Proof of Lemma 3.3.1. Fix 8 € RP and define for 0 <t <1,
Bri=(1—1t)B+1B.

We have R ) ) )
1Y — X3|12 + 2pen(B) < |Y — XB:||? + 2pen(f;)
< |IY — XBy||2 +2(1 — t)pen(B) + 2tpen(s)

where we used the convexity of the penalty. It follows that

_YAI2 11V _ XA2 .
W= X0l W= X0t gpen(3) < 2pen(s).

But clearly

o Y = XBI — 1Y — XBiI
tl0 t

=2(Y - XB)"X(6 - B)/n.

Note that the two point inequality (3.1) can be written in the form
(B=B)"(B - 8°) < " X(B = B)/n+ pen(B) — pen(B).

For the case pen = AQ2 an alternative proof can be formulated from the KKT-
conditions.

3.4 'Weak decomposability and ()-triangle property
What we need is a more general version of the ¢;-triangle property: the -
triangle property

Q(B) — QB) < Q(Bs — Bs) + QB-s) — A (BLs), VB, 5"

Here Q° is a norm defined on RP~I5!. This property holds if S is a allowed set
which is defined as follows
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Definition 3.4.1 The set S is called (Q-)allowed if for a norm Q=% on RP~I5
it holds that

Q(B) > Q(Bs) + Q% (B-s), ¥ BERP. (3.2)
We call Q weakly decomposable for the set S.
Clearly for the £;-norm || - ||; any subset S is allowed, Q™ is again the £;-norm
and one has in fact equality: [|B]1 = ||Bs|l1 + ||B-sl|li. More examples are in

Section 3.9 and Subsection 3.10.2. Observe also that by the triangle inequality

QB) < QBs) +Q(B-s),V B € R.

For allowed sets, one thus in a sense also has the reverse inequality, albeit that
Q(B-s) is now replaced by some other norm.

We introduce some further notation. If 2 and Q are two norms on Euclidean
space, say RP. we write

Q>0 & QB)=2QB)VBER?
and then say that (2 is a stronger norm than . Note that
N>0 = Q. <Q,.
For an allowed set S, write (3.2) shorthand as
Q>Q(|S)+ Q7

where for any set J and 8 € RP, the notation Q(5|J) = Q(S8) is used. Define
Q5 as the largest norm among the norms Q~° for which

Q>0(9)+ Q5.
If Q=5 = Q| — S) we call Q decomposable for the set S.
Let us compare the various norms.
Lemma 3.4.1 Let S be an allowed set so that
Q>9¢9)+9 % =Q.

Then
Q, < Q* = ma'X{Q*(|S)7Q;S}
and
Q=5 < Q(| - 9), 975 > (] - ).

We see that the original norm €2 is stronger than the decomposed version ) =
Q(-|S) + Q7. As we will experience this means we will loose a certain amount
of this strength by replacing 2 by 2 at places.

Proof of Lemma 3.4.1. We first prove Q, < max{Q.(:|S),Q°}. Clearly

Q. (ws) = Qi (ws) = max{Q(ws), 2, %(0)}
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and
Q, (w_s) = 975 (w_s) = max{Q.(0), 25 (w_s)}.

So it suffices to consider vectors w with both wg # 0 and w_g # 0. By the
definition of the dual norm {2,

_ T

ws s % -S
Q(ps)+0-S(5_s)<1 {Q(BS)Q(BS) + Q—S(ﬁ_S)Q (ﬁ—s)}

—S _S
Q(ﬁs)ﬂr;lf%}fﬁfs)gl{Q*(“’S)Q(ﬁS)+Q* (w-5)2""(6-5)}

< max{Q(ws), 0% (w_g)}.

IN

The reverse inequality €, > max{Q.(-|S), 2 °}. follows from

200 = g3, 02 B g = )
and similarly Q(w) > Q7% (w_g).
For the second result of the lemma, we use the triangle inequality
Q<Q([5) + (|- 9)
Since S is assumed to be allowed we also have

Q>0(9)+ a5

So it must hold that Q=% < Q(-| — S). Hence also Q% > Q(-| — S). 0

3.5 (-compatibility

As for the Lasso the results will depend on compatibility constants, which in
the present setup are defined as follows.

Definition 3.5.1 (van de Geer [201}]) Suppose S is an allowed set. Let L > 0
be some stretching factor. The Q-compatibility constant (for S) is

¢3(L,S) = min{|5|llXﬁs —XB-sllz: QBs) =1, Q5 (B_g) < L}.

A comparison of this definition with the compatibility condition for the Lasso
(Definition 1.6.1 in Section 1.6) we merely see that the ¢;-norm is replaced by
a more general norm. The geometric interpretation is however less evident. On
top of that the various Q2-compatibility constants do not allow a clear order-
ing, i.e., generally one cannot say that one norm gives smaller compatibility
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constants than another. Suppose for example that both Q(:|S) and Q= are
stronger than ¢; (see Section 3.7 for this terminology). Then clearly

(i) = {5: Q(Bs) = 1 05(B_s)| < L} c {5: 18slh < 1, [1s < L} — (i),

But the latter set (i7) is not a subset of

(i) = {B sl = 1, 1A < L}.

Hence we cannot say whether the minimum over the first set (i) is larger (or
smaller) than the minimum over the third set (iii).

3.6 A sharp oracle inequality with structured spar-
sity

Let © be a norm on RP. We have in mind a sparsity inducing norm for which
the collection of allowed sets (see Definition 3.4.1) does not only consist of
the trivial sets () and RP. Recall that the Q-structured sparsity estimator B is
defined as

- 2
o= arg min{ ¥ - X812 + 2209) .

Theorem 3.6.1 Consider an allowed set S. Let Ag and \~° be constants such
that
As > Qu(XEe)/n, X5 > Q5 (XL4e)/n.

Let 61 > 0 and 0 < 6o < 1 be arbitrary. Take A > A5 and define
A=2A=A"% Ni= A+ Ag+5A

and

A
L=——/—.
(1 —02)A
Then for any B it holds that

201 AQ(Bs — Bs) + 2020075 (B_g — B_g) + | X (B — 8|12

ISIE]
<NXB-BY2 + o
IX(6 = )+ 2=

Theorem 3.6.1 is a special case of Theorem 5.5.1 in Section 5.5. We do however
provide a direct proof in Subsection 3.10.3. The direct proof moreover facilitates
the verification of the claims made in Proposition 3.8.1 which treats the case of
square-root loss with sparsity inducing norms.

+4XQ(5_s).

One may minimize the result of Theorem 3.6.1 over all candidate oracles (3, .5)
with 8 a vector in RP and S an allowed set S. This then gives oracle values
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(6*,S%). Theorem 3.6.1 is a generalization of Theorem 1.8.1 in Section 1.8.
As there, with the choice §; = d2 = 0 it has no result for the Q(|S) or Q=
estimation error. If we take these values strictly positive say 61 = 91 =6 > 0
one obtains the following corollary.

Corollary 3.6.1 Let S be an Q-allowed set and define
Q=09(|9)+ 5.

Then, using the notation of Theorem 3.6.1 with 61 = do := §, we have for any
B

4 130 0 oz, NS
200 Q(B—=B7) <200 QB-B")+ [ XB=B)n+ 5o

LS +4ANQ(B_g). (3.3)
o\

Remark 3.6.1 The good news is that the oracle inequalities thus hold for gen-
eral norms. The bad news is that by the definition of an allowed set S

Q=>Qq,

where
Q:=Q(|5) + Q5.

Hence in general the bounds for Q-estimation error (as given in Corollary 3.6.1)
do not imply bounds for the Q)-estimation error ofﬂA. As an illustration, we see
in Example 3.9.2 ahead (Section 3.9) that Q=% can be very small when |S| is
large. Lemma 3.4.1 moreover shows that Q7% > Q.(-| — S), leading by the
condition A\ > Q7% (XTg€)/n to a perhaps large tuning parameter.

3.7 Norms stronger than /;

We say that the norm ) is stronger than Q if > €. For such two norms
the dual norm of 2 is weaker: Q, < Q.. Thus, when 2 is stronger than the
¢1-norm || - ||1, Theorem 3.6.1 gives stronger results than Theorem 1.8.1 and its
bounds on the tuning parameter A are weaker. (This is modulo the behaviour of
the compatibility constants: q§2 and gi% are generally not directly comparable.)
Section 3.9 considers a general class of norms that are stronger than the /-
norm.

With norms stronger than ¢; one can apply the “conservative” ¢1-based choice
of the tuning parameter. This is important for the following reason. In view
of Corollary 3.6.1, one would like to choose S in (3.3) in an optimal “oracle”
way trading off the terms involved. But such a choice depends on the unknown
B°. Hence we need to prove a bound for Q;%(X7%¢e)/n which holds for all S
which are allowed and which we want to include in our collection of candidate
oracles. If the norm is stronger than the /;-norm a value A > A\, with A, at
least || XT¢||o/n works. This “conservative” choice is of course a bit too severe
overruling of the noise and in that sense not optimal. There may be cases
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where one still can use smaller values. Perhaps by using cross-validation one
can escape from this dilemma. On the other hand, it is clear that the only
gain when using some “optimal” tuning parameter is in the logarithmic terms
and constants. Chapter 4 further examines the situation for a general class of
norms (see in particular Corollaries 6.2.2 and 6.2.3 in Section 6.2).

3.8 Structured sparsity and square-root loss

Let €2 be a norm on RP. The topic of this section is the square-root Q2-structured
sparsity estimator

fi= arg in{ Y~ X5, -+ a5 .

Let the residuals be X
=Y — Xp.

The motivation for studying square-root quadratic loss is as before: it allows
one to have a tuning parameter that does not depend on the scale of the noise.
This motivation as perhaps less strong though, as we have seen in the previous
sections (see also the discussion in Section 3.7) that the “good” (i.e.minimal yet
effective) choice for the tuning parameter is more subtle as it may depend on the
oracle. On the other hand, for certain examples (for instance the group-Lasso
example (Example 3.9.1 in the next section) this is not an issue and square-root
quadratic loss gives a universal choice and not overly conservative choice for the
tuning parameter.

The idea in this section is as in Chapter 2 to first present an oracle inequality
under the assumption that € #£ 0, i.e, no overfitting. This is done in Subsection
3.8.1. Then Subsection 3.8.2 shows that indeed é # 0 with high probability.
Finally Subsection 3.8.3 combines the results. The arguments are throughout
completely parallel to those for the square-root Lasso as presented in Chapter
2.

3.8.1 Assuming there is no overfitting

In this subsection we assume ¢ # 0. In the next section we show this is the case
with high probability if 50 is Q-sparse.

We define
L 0.(XTe)

nllelln
Moreover, for allowed sets S we define
~ o (XEe) g O%(XTge)

S = =
nlelln nlelln
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Proposition 3.8.1 Suppose |||, > 0. Consider an allowed set S. Let

Rs > Rs, R >R ™5,
Let 61 > 0 and 0 < 6 < 1 be arbitrary. Take Aol|é||n > R*SHAeHn and define
ALllelln = Aollélln = B=lelln, Aullelln == Aollélln + Rsllelln + o1 AL]le]ln and

~

i Au

~ .

(1 —d2) AL,
Then for any 8 we have
261\ | €ellnQ2(Bs — B) + 202 AL lel|ln Q5 (B-s) + | X (B — 8°)II2

AGllellzlS]

<IX(B =82 + L=
X (8 =Bl (L. 9)

+ ArolellBs).

Proof of Proposition 3.8.1. This follows by the same arguments as for
Theorem 3.6.1 (see Subsection 3.10.3 ) and using the two point inequality (?7?).
O

3.8.2 Showing there is no overfitting
Conditions that ensure that ¢ # 0, and in fact ||€]|,, is close to ||€||,, are of the
same flavour as for the square-root Lasso in Lemma 2.4.1.

Lemma 3.8.1 Suppose that for some 0 < n < 1, some R > 0 and some g > 0,
we have
/\0(1 — ’17) Z R

and

M%)/ < 2<\/1 + (n/2)% — 1). (3.4)

Then on the set where R < R and ||e||, > o we have

el /el = 1| <
Proof of Lemma 3.8.1. This follows by exactly the same arguments as those

used for Lemma 2.4.1. O

3.8.3 A sharp oracle inequality

Putting the previous two subsections together yields the following oracle result.

Theorem 3.8.1 Let S be an allowed set. Let for some positive constants R,
Rs, R7°,0<n <1 and o, the Q-sparsity (3.4) hold, and

Rs > Rg, R">R™%,

R>R, e, >c
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and
Xo(1—n) > max{R, R~}
Define
Xo = Xdo(1—1) — R, Ao = Xo(14n)Rs + 1)
and _
Ao
L=———7#—.
(1= 1d2)Xg

Then for any B we have

251 20ll€nQ(Bs — B) + 2Aqllelln2(B-s) + 1 X (B = 817

AgllellZ1S]

<[ X(B -89 + =
1X(8 =Bl 32(L.5)

+ 401+ n)lefln2(5-s)-

Proof of Theorem 3.8.1. This follows from Proposition 3.8.1 combined with
Lemma 3.8.1. O

3.9 Norms generated from cones

This section introduces a general class of norms for which the weak decom-
posability property, as presented in Defintion 3.4.1, holds. The corresponding
allowed sets are the sets which one believes to be candidate active sets.

Let A be a convex cone in R} =: [0,00)P. This cone is given beforehand and
will describe the sparsity structure one believes is (approximately) valid for the
underlying target 3°.

Definition 3.9.1 The norm ) generated by the convex cone A is

16517

a;j

—i—aj], 8 € RP.

Here we use the convention 0/0 = 0. If 3; # 0 one is forced to take a; # 0 in
the above minimum. It is shown in Micchelli et al. [2010] that Q is indeed a
norm. We present a proof for completeness.

Lemma 3.9.1 The function Q defined in Definition 3.9.1 above is a norm.

Proof of Lemma 3.9.1. It is clear that Q(5) > 0 for all 5 and that it can
only be zero when § = 0. It is also immediate that the scaling property

QAB) = A2(B), VA>0, BeR?,

holds, where we use that A is a cone. The function 5 — Q(3) is convex because
(a,b) — b?/a and a + a are convex functions and A is convex. The triangle
inequality follows from this and from the scaling property. a
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We call Q the norm generated by the cone A. One may verify that penalty
proportional to the norm ) generated by the convex cone A favours sparse
vectors which lie in A. It is easy to see that the ¢1-norm is a special case with
A=RE.

Having sparsity in mind, a minimal requirement seems to be that when coordi-
nates are put to zero this does not increase the norm. This is indeed the case
for a norm generated by a cone, as the following lemma shows.

Lemma 3.9.2 For J C J we have
Q) <Q(LT), Qul(]T) = Qul:]J).

Proof of Lemma 3.9.2. Let 8 € RP be arbitrary. For all a € A

jed j=1
Hence also ) , )
155 ] 1 B;
min — f]—i-aj Smme fj—kaj
acA 2 4 a; acA 2 4 a;
jedJ - - 7j=1

O

The rest of this section is organized as follows. First in Lemma 3.9.3 an alter-
native representation of the norm {2 generated by a cone is presented, and also
the dual norm. Then Lemma 3.9.4 shows which sets S are allowed and the cor-
responding weak decomposablity into Q(:|S) and Q~°. Then in Lemma 3.9.5 a
bound for Q(:| — J) in terms of Q=7 is given, for general sets J and hence in
particular for allowed sets J = S. Lemma 3.9.6 states that Q := Q(-|.J) + Q=7
is stronger than the £1-norm. We end the section with some examples.

Lemma 3.9.3 We have

p BQ'
Qp) = min L = min 3.5
8) a€A, |all1=1 ]Z; aj  a€A, |laf1<1 (3:5)
and

P P
Q. (w) = max a;w? = max a;w2. 3.6
*( ) a€A, |lall1=1 Z: I a€A, [laf1<1 Z _ ( )

Jj=1 Jj=1
Proof. Exercise. O

For J C {1,...,p} we set
Aj={ay: ac A}.

Note that A is a convex cone in R‘jr]‘ (whenever A is one in R% ). Denote the
norm on RI| generated by A; as

QJ(,B — 3 1 [‘53’2 :| p
J) = min Z +aj;|, B R~

ajEA
TSRS e

a;
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Recall that a set S is called allowed if €2 is weakly decomposable for the set S.

Lemma 3.9.4 If Ag considered as subset of RP is a subset of A we have the
weak decomposability
Q>Q(8)+0°

so that S is allowed.
Proof. Observe first that Ag C A implies Q(8s) = Q%(Bs). Moreover

2 2
Q(B) > min1 [BJ + aj} + min1 {ﬁ] + aj]
J j

acA 2 4 a acA 2 4 a
JeES j¢s

1 [ﬂf ] 1 [ 2 }
> min — — 4+ a;| + min = — 4+ a;
as€Ag 2 ]625’ a; J a_g€A_g 2 % a; J
= Qs(8s) + Q% (B_s).
O

Lemma 3.4.1 pointed out that in the case of an allowed set the Q~°-norm may
be quite small. We now examine this for the special case of a norm generated
by a cone.

Lemma 3.9.5 Let £~/ be the extreme points of the Q™ -unit ball. Then
Q| -J)<w Q7

where w™! = max{Q(e™’| - J): e/ € £}

Proof. Define w := max{Q(B_;| —J) : Q7/(B_;) = 1}. The maximum is
attained in the extreme points of the Q~7-unit ball. O

Recall the bad news in Remark 3.6.1 that the oracle results of Theorem 3.6.1 and
its relatives in general do not imply bounds for the Q2-estimation error. However,
there is some good news too: they do imply bounds for the ¢;-estimation error.
This is clear from the next lemma.

Lemma 3.9.6 For any set J,

- [l < min{Q(-J), '}
Proof of Lemma 3.9.6. We clearly have

P P
Q(p) = min1 [’%‘2 —i—aj] > min EZ [W —i—aj] )

J
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over a; > 0 is equal to |3;|. We apply this argument with € respectively
replaced by Q(-|J) and Q7. O

We give four examples from Micchelli et al. [2010].

Example 3.9.1 (Group Lasso penalty) Let {G; };":1 be a partition of {1,...,p}
into m groups. The set A consists of all non-negative vectors which are constant
within groups. This gives

Q8) =Y _\/IGillIBg, Il
j=1

With squared error loss a penalty proportional to this choice of Q) is called the
Group Lasso. It is introduced in Yuan and Lin [2006]. Oracle inequalities for
the group Lasso have been derived in Lounici et al. [2011] for example. For the
square-root version we refer to Bunea et al. [2014]. The dual norm is

Qu(w) = max [lwe,ll2/4/1Gj!-

Any union of groups is an allowed set and we moreover have for any allowed
set S

Q% =a(| - )

and

Q=0Q(|5) + Q7.

In other words, this norm is decomposable which frees it from the concerns
expressed in Remark 3.6.1.

Example 3.9.2 (Wedge penalty) Consider the norm corresponding to the
wedge penalty:

A:={a; >az>--}.

Let for some s € N, the set S :={1,...,s} be the first s indices. Then S is an
allowed set. To see that Q= can be much smaller than Q(:|—S), take the vector
B € RP to be one in its s + 1-th entry and zero elsewhere. Then Q*S(B) =1

but Q8| — S) = /s + 1.

Example 3.9.3 (DAG penalty) Let A= {Aa > 0} where A is the incidence
matriz of a directed acyclic graph (DAG) with nodes {1,...,p}. Then removing
orphans is allowed, i.e., successively removing nodes with only outgoing edges
the remaining set is allowed at each stage.

Example 3.9.4 (Convexity inducing penalty) Let A := {agio — 2a;_1 +
Qg > 0}



44 CHAPTER 3. STRUCTURED SPARSITY
3.10 Complements

3.10.1 The case where some coefficients are not penalized

Suppose the coefficients with index set U C {1,...,p} are not penalized. The
Q-structured sparsity estimator is then

b= ang in {1y~ X512 + 220051 - )}

where Q(5| —U) := Q(B_v), B € RP. We need the following result.
Lemma 3.10.1 Suppose that Q(-| —U) < Q. Then for all z_yy € RP

Q2] = U) = Q(z_v).

Proof. By the definition of {2,

Q(z_y) = max Blz_y.

Q(p)<1
Hence
Qu(z_y) 2 max T, o max BTa = Qe p| — ).
( U)_Q(ﬁ)SL 5=57U/8 v Q([LU)SIBU U ( U| )

On the other hand, the condition Q(-| — U) < € implies
QB)<1=9(B-v) <1
and therefore

O (z_py) < max T 2=yl -U.
(2-v) Q(B,U)glﬂU U (z—v|=U)

When Q(:-] = U) < Q the KKT-conditions are

XT(Y = XB)/n+ M.y =0,Q((-v) < 1, iphv = QB_v).

3.10.2 The sorted /;-norm

Let A; > Ay > -+ > ), be a given increasing sequence. For 8 = (B1,...,8,)T €
R? we define the vector of absolute values in increasing order 3|y > |8]2) >
-+ > |B|(p)- The sorted ¢1-norm is

p
Q8) =Y AilBl)-
j=1

It was introduced in Bogdan et al. [2013]. In Zeng and Mario [2014] it is shown
that this is indeed a norm and they provide its dual norm. We now show that
this norm is weakly decomposable.
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Lemma 3.10.2 Let »
Q(B) = > \lBl),
j=1

and

QO 5(Bs) =D MprttlBlu—s),
=1

where 1 =p — s and |B|(1,—g) > --+ > |B|(r,—s) 5 the ordered sequence in f_g.
Then Q(B) > Q(Bs) + Q%(B_g). Moreover Q~ is the strongest norm among
all Q=% for which Q(B) > Q(Bs) + Q5 (B_s)

Proof of Lemma 3.10.2 . Without loss of generality assume 31 > --- > 3, >
0. We have

p
QB +Q7%(B_s) = Z AjBr ()

Jj=1

for a suitable permutation 7. It follows that (Problem ?7?)

Q(Bs) + Q75 (B_s) < QUB).

To show Q% is the strongest norm it is clear we need only to search among
candidates of the form

T

Q_S(ﬁ—s) - Ap—r—‘,—lﬂwfs‘(l)
=1

where {),_,,;} is a decreasing positive sequence and where a7 5(),..., 7 5(r)
is a permutation of indices in S¢. This is then maximized by ordering the indices
in S in decreasing order. But then it follows that the largest norm is obtained
by taking A,_, ;= Ap—pyy foralll=1,... 7. O

3.10.3 A direct proof of Theorem 3.6.1

In stead of checking the conditions of the more general Theorem 5.5.1 we give
here a direct proof. This also helps to follow the assertion of Proposition 3.8.1.
We simplify the notation somewhat by writing Qs := Q™5, A\; := Ag and
Ao 1= A5,
o If
0AQ(Bs — Bs) + 622Q2(B-s — B-5) + (B — B)TE(5 — 5%) < 20Q(B_5)
we know from the two point margin that
20A0(Bs — Bs) + 20:A0(B-s — B-s) + | X(B - B>
< X (B = BO)I5 +4AQ(B-s).

e Suppose now that

512Q(Bs — Bs) + 02A0(B_s — B-s) + (B — B)TT(B — %) > 20Q(B_s). (3.7)
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By Lemma 3.3.1

(B— B )S(B -8 < (B-B)"XTe/n+AB) — AUB)
< MQBs — Bs) + Aa2(Bog) + (A + A2)Q(Bs) + AQ(Bs) — AQ(B)
< (A +M)Q(Bs — Bs) — AQa2(B-s — B-sg) + 2)\Q(B-s).

We summarize this and give the inequality a number for reference:

(B—B)TS(B -8 < (A+21)QBs — Bs) — A (B-s — B—s) +2AQ2(B_s). (3.8)

From (3.7) we see that

(1= 02)A(B-s — B-s5) < AQ(Bs — Bs)
or . .
Qo(f—s — B-g) < LQ(Bs — Bs).
It follows that

Q(Bs — Bs) < VISIIX(B = B)lln/a(L,S).

But then, inserting (3.8),
B=B)E( B =B +01A0Bs — Bs) + 0240 (B_s — B_s)

AQ(Bs — /BSA) + 2)@(@75)

MWISIIX (B = B)lln/da(L, 8) +222(B-s)

1 29 1 . 9
5&%(11, s) + iHX(ﬁ = B)ll5 + 22Q2(B-s).

ININ

IN

By the two point margin this gives
IX(8 = B°)II7 + 261A2(Bs — Bs) +2622Q2(5-s — f-5)

\2|S
< IX(8 - B2 + =15

LS +ANQ(B_g).



Chapter 4

Empirical process theory for
dual norms

4.1 Introduction

Consider a vector € € R" with independent entries mean zero and variance 0(2] .
We let X be a given nx p matrix. We are interested in the behaviour of 2, (X7¢)
where €, is the dual norm of Q. Note that XTeisa p-dimensional random vector
with components XJTe where X is the j-th column of X (j =1,...,p). For each
J the random variable W; := X]-Te/n is an average of n independent random
variables with mean zero and variance o3||X;||2/n. Under suitable conditions,
W; has “Gaussian-type” behaviour. In this chapter, we assume for simplicity
throughout that € is Gaussian:

Condition 4.1.1 The vector € € R" has a N, (0, 03)-distribution.

Then XJTE is Gaussian as well and derivations are then simpler than for more
general distributions. Although, the Gaussianity assumption is not crucial for
the general picture, it does make a difference.

4.2 The dual norm of /; and the scaled version

The dual norm of || - [|1 is || - [|cc. We will derive the following corollary.

Corollary 4.2.1 Let € ~ N,(0,021) and let X be a fized n x p matriz with
diag(XTX)/n=1. Let 0 < a < 1 be a given error level. Then for

M= oy 2108 @p/@)

n

we have
]P(\XTeHoo/n > )\€> < a.

47
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The scaled version is
[ X" €]|oo/n

lelln

R:=

We first present a probability inequality for the angle between a fixed and a
random vector on the sphere in R™.

Lemma 4.2.1 Let € ~ Ny, (0,03) where n > 2. Then for any u € R™ with
|lul|ln, =1 and for all0 <t < (n—1)/2 we have

T [ 2t
]P( [u”el > ) < 2exp|[—t].
n|lel|n n—1

Proof of Lemma 4.2.1. Without loss of generality we may assume ¢ = 1.
Because €/||€]|,, is uniformly distributed on the sphere with radius /n in R,
we may without loss of generality assume that u = y/ney, the first unit vector

scaled with v/n. Then ule/(n|le|ln) = e1/(v/nllelln) = e1/4/ >, €2. It follows
that for 0 <t <n/2

1P<|“T6 > \/2t/ ) ]P<2>2tzn: 2)
_ n|= € — €
nllelln ~ "o '

=1

2t 2 — 2t "
- P 1—- 222> 22 2l =P | > 2.
<( n)EI on ;Q) (61_ (n—Zt) ‘:261

7

The random variable Z := 3" , 622 has a y2-distribution with n — 1 degrees of
freedom. It follows that for v > 0

n—1

]Ee—UZ/Q — 1 B
14w '

We moreover have that for all a > 0,
P(¢2 > 2a) < 2exp|—al.

So we find, with fz being the density of Z

(4= () E4) - (e () mon

1 n—1 2t n—1
2 — 2
L+ 255 n
-1
< 2exp[—t<n )}
n

Finalize the proof by replacing ¢ by tn/(n — 1). O
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Lemma 4.2.2 Let € ~ N, (0,021) and let X be a fired n x p matriz with
diag(XTX)/n = 1. Let o, a and & be given positive error levels. Define

o? ::a§<1—2\/10g<71/0‘)>,

o 1y ORI 2ot

o

n n
and

R = M

n—1

We have
P(llelln < a) < a, P(|elln, >7) < a

and

P(R>R) < .

Proof of Lemma 4.2.2. Without loss of generality we can assume O'g = 1.
From Laurent and Massart [2000] we know that for all £ > 0

P (Il < 1 -2V ) < explt

and
IP(HGHZ >142t/n+ 2t/n> < exp[—t].
A proof of the latter can also be found in Lemma 4.6.1

Apply this with ¢ = log(1/a) and ¢ = log(1/a) respectively. The bound for R
follows from Lemma 4.2.1 and the union bound. O

4.3 Dual norms generated from cones

In Maurer and Pontil [2012] one can find first moment inequalities for a general
class of dual norms. Here, we consider only a special case and we establish
probability inequalities directly (i.e. not via concentration inequalities).

Let 2 be the norm generated by a given convex cone A:

1[5
Q(B) := min = [j—f—a]},BERp.
acA 2 = a;

(see Section 3.9). Lemma 3.9.3 expresses the dual norm as

Qu(w) = max
a€A, [ali=1
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Aim of the rest of this chapter is to bound Q. (W), with Wh,..., W, random
variables (in our setup, W, = X]Te/n, j =1,...,p). Recall that in order to
simplify the exposition its is assumed that these are Gaussian random variables.
The results can be extended to sub-Gaussian ones.

It is easy to see that > || - |1 and hence we have Q, < || - |[«. However, in
some instances this bound can be improved. This is for example the case for
the group Lasso, as we show below.

4.4 A generalized Bernstein inequality

In this section it is shown that under a condition on the moment generating
function of a non-negative random variable Z one has a Bernstein-like inequality
involving a sub-Gaussian part and a sub-exponential part. We apply this in the
next section to squared Gaussians.

The following result can be deduced from in [Birgé and Massart [1998], Lemma
8 and its proof] or [Bithlmann and van de Geer [2011], Lemma 14.9 and its
proof].

Lemma 4.4.1 Let Z € R be a random variable that satisfies for some K and
c and for all L > K

c
< —_—| .
Eexp[Z/L] < exp [(LQ — LK)]
Then for allt >0
P <Z > 2\/tc—|—Kt) < exp|[—t].

Proof of Lemma 4.4.1. Let a > 0 be arbitrary and take
K/L=1-(1+4aK/c)™Y?
apply Chebyshev’s inequality to obtain

CL2

aK +2c+2vVacK + 2]

P (Z > a) < exp [_

Now, choose a = Kt + 2v/tc to get
P (Z > 2\/t7;+Kt> < exp[—t].
O
Lemma 4.4.2 Let Z € R be a random variable that satisfies for a constant Ly
C3 :=TEexp||Z|/Lo] < cc.
Then for L > 2L

2,12
Eexp|(Z —EZ)/L] gexp[ 2LoCo ]

L? —2LL
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Proof of Lemma 4.4.2. We have for m € {1,2,...}
E|Z|™ < mILy'C3.

Hence
E|Z —EZ|™ < m'(2Lo)™C3.

So for L < 2L

2L
Eexp[(Z -EZ)/L] < 1+Z ‘Lm]E|Z EZ|m<1—|—Z< 0) c?

m=2

L2—2LL0 = P L2—2LL0 ‘
O

Combining Lemma 4.4.1 with Lemma 4.4.2 gives us back the following form of
Bernstein’s inequality.

Corollary 4.4.1 Let Zy,...,Z, be independent random variables in R that
satisfy for some constant Lg

2. _ )
Co = max Eexp(|Zi]/Lo] < oo

Then we can apply Lemma 4.4.1 with K = 2Lg and ¢ = 2nL3C3 to find that
for allt >0

P (:L zn:(ZZ —-EZ;) > 2Ly (C’O\/2t/n+t/n>) < exp[—t].

=1

4.5 Bounds for weighted sums of squared Gaussians

Consider p normally distributed random variables W7, ..., W), with mean zero
and variance o3 /n. Let W := (Wy,...,W,)T be the p-dimensional vector col-
lecting the Wj, j = 1,...,p. Let ai,...,a, be m given vectors in RP, with
lagiy =1forl=1,...,m

Key ingredient of the proof of the next lemma is that for a N'(0, 1)-distributed
random variable V', the conditions of Lemma 4.4.1 hold with K = 2 if we take
Z =V? — 1, see [Laurent and Massart [2000], Lemma 1 and its proof].

Lemma 4.5.1 Let 0 < a < 1 be a given error level. Then for

2
A= 20 (1 +2¢/log(m/a) + 2 1og(m/a)>
n
we have

P | max ZaJlW2>)\2 < a.

1<l<m
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Lemma 4.5.1 is somewhat a quick and dirty lemma, although the bound is
“reasonable”. As a special case, suppose that a; = e;, the j-th unit vector,
j=1,...,m, and m = p. Then we see that the bound of Corollary 4.2.1 in
Section 4.2 is generally better than the one of the above lemma. Thus, since
we know that the dual norm of a norm €2 generated by a convex cone is weaker
than the || - [[co-norm, Lemma 4.5.1 is in general somewhat too rough.

Proof of Lemma 4.5.1. Write V; := /nW;/oy. First check that for all L > 2

Eexp{(V —1)/4 <eXp[L2 ! 2L}

see also [Laurent and Massart [2000], Lemma 1 and its proof]. We moreover
have for all [

Eexp [Z aj (V2 —1) /L] <ﬁexp [aj,,(v]? - 1)/LD.

Jj=1

We now use Holder’s inequality, which says that for two random variables X
and Y in R, and for 0 < a < 1

ELX Y] < (BlX])*EY]) ™

Hence also

(Hexp[aﬂ —1)/LD < 1j<Eexp[ _1)/L]>aj,l
fierlstal) ool

Therefore by Lemma 4.4.1, for all ¢t > 0

IN

]P(Zp: aj (Vi —1)>2t+ 2\/£> < exp[—t].

J=1

Apply the union bound to find that for all t > 0

max Zagz — 1) > 2/t + log(m) + 2(t + logm) | < exp[—1].
1<i<m ¢
Finally, take t = log(1/«). O

4.6 The special case of y’-random variables

We now reprove part of Lemma 1 in Laurent and Massart [2000].This allows us
a comparison with the results of the previous section.
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Lemma 4.6.1 Let X% be a chi-squared distributed with m degrees of freedom.
Then for allt > 0
P (X% >T+2viT + Qt) < exp[—t].

Proof of Lemma 4.6.1. Let Vi,...,Vp be i.i.d. N(0,1). Then (see the proof
of Lemma 4.5.1)

Eexp [(Vf — 1)/L] < exp[

Hence, by the independence of the V7,

1
L? -2L

T

T
2
bexp LZl(vj U/ L} < exp [M}
The result now follows from Lemma 4.4.1 (with K =2 and ¢ =T). O

As a consequence, when one considers the maximum of a collection of chi-
squared random variables, each with a relatively large number of degrees of
freedom, one finds that the log-term in the bound becomes negiglible.

Corollary 4.6.1 Let, for j =1,...,m, the random variables X2Tj be chi-square
distributed with T; degrees of freedom. Define Tiin := min{T; : j=1,...,m}.
Let 0 < a < 1 be a given error level. Then for

log(m/«) N 2 log(m/a)>

min Tmin

1
M2 ::<1+2
n

we have

2 2
P <11<1322}7<n xt;/Tj = n)\0> < a.

4.7 The wedge dual norm

The wedge penalty is proportional to the norm

QB) =

min
a€A, |lall1=1

Q(w) = max
a€A, llafli=1
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Lemma 4.7.1 Let Wh,..., W), be i.i.d. N(0,1). Then for allt >0

k
1 9 et
IP(maX - E w? > 1+2\/£+2t> <<
Proof of Lemma 4.7.1. By Lemma 4.6.1 we have for all k

k
1
P (k WP =142vE+ 2t> < exp|—kt].
j=1

Hence

t

k D _
1 9 e
]P(rilax - E W5 > 1+2\/Z+2t) < g_lexp[—kt] < ot



Chapter 5

General loss with
norm-penalty

5.1 Introduction

Let X1,...,X,, be independent observations with values in some observation
space X and let for 3 in a space B C RP be given a loss function pg: X =R
The parameter space B is some given subset of B. The parameter space B is
potentially high-dimensional, so that possibly p > n. We require throughout
convexity of parameter space and loss function. That is, we require Condition
5.1.1 without further explicit mentioning.

Condition 5.1.1 The parameter space B C B is convex and the map

B ps, BeB

18 convex.

Define for all 3 in the extended space B the empirical risk
1 n
Ra(B) = Paps i= > pal(X0)
i=1

and the theoretical risk

R(B) := Ppg :=ER,(p).

Let ©Q be a norm on RP. This chapter studies the Q-structured sparsity M-
estimator

B = arg min{Rn(ﬁ) + AQ(B)}.
BeB
with A > 0 a tuning parameter.

95
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The “true” parameter or “target” is defined as the minimizer of the theoretical
risk over the extended space B
8" := arg min R(8)
BeB

(where uniqueness is not required without expressing this in the notation). In
many cases one simply is interested in the target with B = B.! On the other
hand 8° may be some more general reference value. As a look-ahead, the main
result, Theorem 5.5.1 in Section 5.5.1 makes no explicit mention of any target
3% (as it should be from a learning point of view). However, there is a mention
of a local set Bjgcal. This generally points to a neighbourhood of some target

B0

5.2 Two point inequality, convex conjugate and two
point margin

We first need to introduce a “local” set Bjyca;. Without further explicit men-
tioning, we require:

Condition 5.2.1 The set Bigca s a convex subset of B.

The set Biyeal is typically a neighbourhood of 3° (for some suitable topology).
The reason is that typically the conditions we will impose (to be precise, Con-
dition 5.2.2) only hold locally. One then needs to prove that the estimator is in
the local neighbourhood. Here one may exploit the assumed convexity of the
loss. Section 5.6 illustrates how this works. There Bjoeq is the set of 3/ € B
which are in a suitable Q-norm close to £°. In the case of quadratic loss, one
generally does not need to localize, i.e, then one can take Bigca1 = B. For the
moment we leave the form of the local set unspecified (but we do require its
convexity).

In what follows we will use parameter values 8 and 3. The value 3 will represent
a “candidate oracle”, that is, one should think of it as some fixed vector. The
assumption 8 € Bjgca is thus reasonable: candidate oracles are supposed to
know how to get close to the target 5°. The value 3’ typically represents the
estimator B . Thus the assumption ' € Bjya may mean that some work is to
be done here.

Definition 5.2.1 We call R,, right-differentiable if for all 8,5 € Biocal

lim Ru((1 =t)B +1t8) — Ru(B)
t}0 t

< R(8) (8~ 8)

where R, (3') € RP. We call R,(8') the right-derivative of R, at f3'.

! An example where this is not the case is where B is a lower-dimensional subspace of B.
This is comparable to the situation where one approximates a function (an oo-dimensional
object) by a p-dimensional linear function (with p large). Formally (since we take B finite-
dimensional) we do not cover the latter case. This latter case does not really lead to additional
theoretical complications, but seems to need cumbersome notations.
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Lemma 5.2.1 (Two point inequality) Suppose R, is right-differentiable and
that B € Bigeal- Then for all 8 € Biocal

—Ra(B)" (B — B) < AQ(B) — AQ(B).
Proof of Lemma 5.2.1 . Let § € B and define for 0 <t < 1,

B i=(1—1)B+1p.

Recall that we require Bjgca to be convex, so Bt € Bloea for all 0 < t < 1. We
have for pen := AQ)

R (B) + pen(B) < Rn(Br) + pen(B;) < Ru(B:) + (1 — t)pen(B3) + tpen(B).

Hence

A~

Rn(B) —t R, () < pen(B) — pen(B)-

The results now follows by sending ¢ | O. O

Definition 5.2.2 (Convex conjugate) Let G be an increasing strictly convex
non-negative function on [0, 00) with G(0) = 0. The convex conjugate of G is

H(v) == sup{uv - G(u)}, v >0,

u>0

For example, the convex conjugate of the function u s u®/2 is v+ v?/2.
Clearly, if H is the convex conjugate of G one has for all positive u and v

wv < G(u) + H(v).
This is the one-dimensional version of the so-called Fenchel-Young inequality.

We assume that R is differentiable with derivative R at all 8 € Bioeal C B.

Condition 5.2.2 (Two point margin condition) There is an increasing strictly
convex non-negative function G with G(0) = 0 and a semi-norm T on B such
that for all $ and B in Bioca we have

R(B) — R(8") = R(B")" (8 — ') + G(r (8 — B")).
Note that R(:) is in view of our assumptions a convex function. One calls
Br(8.,8") = R(B) = R(8') = R(B)" (B — ), 8, B’ € Bioca
the Bregman divergence. Convexity implies that

BR(B:/B/) > 07 v 67 /8/ € Blocal-

But the Bregman divergence is not symmetric in 8 and 8’ (nor does it satisfy
the triangle inequality). The two point margin assumption thus assumes the
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the Bregman divergence is lower bounded by a symmetric convex function. We
present examples in Chapter ?7.

We have in mind applying the two point margin condition at ' = B and
B8 = B* where 8* is some “oracle” which trades off approximation error, effective
sparsity and part of the vector 5* where the Q2-norm is smallish. Important to
realize here is that the oracle 5* is a fixed vector. We note now that in the two
point margin condition we assume the margin function G and the semi-norm 7
not to depend on ' and 3. The first (no dependence on /') is important, the
last (no dependence on ) can be omitted (because we only need our conditions
at a fixed value 5*). For ease of interpretation we refrain from the more general
formulation.

5.3 Triangle property and effective sparsity

In this section we introduce the triangle property for general norms 2. The
triangle property is a major ingredient for proving sharp oracle inequalities, see
Theorem 5.5.1 in Section 5.5. Section 5.4 showsthat the triangle property holds
for certain vectors which are either allowed or allowed* (or both). Examples
can be found in Chapter 6.

Definition 5.3.1 Let QT and Q~ be two semi-norms. We call them a complete
pair if QT + Q™ is a norm.

Definition 5.3.2 We say that the triangle property holds at 8 if for a complete
pair of semi-norms QE and QE and QE % 0 one has

Q(B) — QB') < QL (F — B) — Q5 (8), ¥ B € R

Note that in this definition one may choose for QE a very strong norm. This
has its advantages (Theorem 5.5.1 then gives bounds for estimation error in
a strong norm) but also a major disadvantage as for stronger norms Qg the
effective sparsity defined below will generally be larger.

In the next lemma, a vector § is written as the sum of two terms:
B=p"+5".

The situation we have in mind is the following. The vector (3 represents a
candidate oracle. It may have a “good” sparsity-like part 87 and a “bad”
smallish-like part 8~. For the “good” part, the triangle property is assumed.
The “bad” part of a candidate oracle better have small 2-norm, otherwise this
candidate oracle fails, i.e., it will not pass the test of being oracle. So we think
of the situation where Q(57) is small. The term (87) is carried around in
all the calculations: it is simply there without playing a very active role in the
derivations.
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Lemma 5.3.1 Let 8= 3T+ 8~ where 3% has the triangle property and where
Q;JF(B*) = 0. Then for any 3 € RP

QB) —UB) < QT - B) - Q7 (B~ B) +29(87)
with O+ = Q;ﬁr and QEJr =0

Proof of Lemma 5.3.1. We will first show that Q7 (87) < Q(87). By
applying the triangle property at 8’ := 8% we obtain 0 < —Q~(81). Hence
Q7 (B1) = 0. We next apply the triangle property at 3’ := 8T + 3~. This gives

QBT -QBT+BT)SQT(BT) - (BT +BT) = -2 (BT +87)
since by assumption Q7 (57) = 0. By the triangle inequality
QBT+ (BT) - (BN)=07(87)

since we just showed that Q= (87) = 0. Thus we have

QBT) QBT +B7) < Q7 (87).
On the other hand, by the triangle inequality

QBT) - QBT +87) > -Q(87).
Combining the two gives indeed Q™ (87) < Q(57).
Let now 3’ be arbitrary. By the triangle inequality

Q(B) - Q(B) <QUBT) +Q(87) - B.
Apply the triangle property to find
Q(B) —UB) < QT (BT - B) - (8) +2(87).
Then apply twice the triangle inequality to get
QB)-QB) < QAFB-B)+QT(B) - (B-8)+Q(B)+Q(B7)
< QN B-B)-Q7(B-p)+29(87),
where in the last step we used that QT (7)) =0and Q= (8) < Q (87) < Q(B7).
O

Definition 5.3.3 Let 8 have the triangle property. For T a semi-norm on RP
and for a stretching factor L > 0, we define

~1
To(L,B,7) = (min{T(B) D BeR?, QF(B) =1,95(P) < L}) .
We call T3(L, 8,7) the effective sparsity (for the norm ), the vector B3, the

stretching factor L and the semi-norm 7).

Effective sparsity is a generalization of compatibility. The reason for the (some-
what) new terminology is because the scaling by the size of some active set is
no longer defined in this general context.
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5.4 Two versions of weak decomposability

Definition 5.4.1 We call a vector 8 allowed if for a complete pair of semi-
norms QE and Qg with QE(B) =Q(B), Q5 #£0 and Q5 (8) =0, one has

+ —
QZQB_'_QB'

We then call Q weakly decomposable at 3. If in fact we have equality: € =
QE + Q/g, we call  decomposable at 3.

Recall that for 5 # 0
INB) ={2z e RP: Qu(2) =1, 213 =Q(p)}.

Definition 5.4.2 We call a vector B allowed* if for a complete pair of semi-
norms QE and QE with QE # 0 one has for all ' € RP

min 2"(8 - §') <QF (8" - B) — Q5 (8).

z€0Q(B)

We then call Q weakly decomposable™ at 3.

Lemma 5.4.1 Suppose (8 is an allowed or an allowed™ vector. Then the trian-
gle property holds at 3:

Q(B) - Q) < QF (8" = B) — Q5 (8).

Proof of Lemma 5.4.1.
e If 3 is an allowed vector we have for any 3’ the inequality

QB) - QB) < QUB) - Q5(8) — Q5 (8) < Q58— B) — 25 (8).
o If B is an allowed* vector we have for any z € 9Q(3)
QB) - QB < (B-5).
Hence

28) - 08) < _min 2T(8- ) <~ B) - 2 (3)

If we allow for a "good” and a "bad” part in the vector 5 we get:

Corollary 5.4.1 Let 3 = 3% + 3~ where BT is allowed or allowed* and where
QEJF (87) =0. Then by Lemma 5.53.1 combined with Lemma 5.4.1 we have for

any ' € RP
QB) = QB) <QT (B = B) - (8 - B) +29(67)

with Qt = Q§+ and Qng =0".
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We note that 8 allowed™ does not imply 3 allowed (nor the other way around).
In fact there are norms 2 where for all allowed* /3

+ —
Q§9ﬂ+§2ﬂ

i.e. <instead of > asis per definition the case for allowed vectors. Lemma 6.4.2
in Subsection 6.4.2 shows an example. Here {2 is the nuclear norm as defined
there (Section 6.4).

5.5 A sharp oracle inequality

Notation for the candidate oracle In the next theorem we fix some § €
Biocal, a “candidate oracle”. We assume [ to be the sum of two vectors § =
BT + B~ where Q has the triangle property at ST and where Q;ﬂ(ﬂ*) = 0.
Write then QF := Qg} and Q7 := ng+ We let

Q=05 + (1 —15)Q = Qs+

be the strongest norm among all convex combinations "szgr +(1— ’y)QE, v €
[0, 1].

Theorem 5.5.1 Assume R, is right-differentiable and that Condition 5.2.2
(the two point margin condition) holds. Let H be the conver conjugate of G.
Let

= 2 (fu() - (A (5.1)

Set \1 = Aeygr and Xy := A (1 — vg+). Take the tuning parameter X large
enough, so that A > Ao. Let 61 > 0 and 0 < 92 < 1 be arbitrary and define

Ai=A— X, Ai= A+ +5A

and stretching factor

A

L= 7(1 EEATY

Then, when B € Biocal s

ST (B — B) 4+ 62007 (B — B) + R(B)

< R(B)+ H(APQ(L, B, r)> +2XQ(87).

Note that it is assumed that B € Biocal- Theorem 5.6.1 gives an illustration how
this can be established. Note also that no reference is made to the target 3°.
However, in Theorem 5.6.1 Bjoca as some local neighbourhood of 89, so in the
end the target does play a prominent role.
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We need inequalities for Q,(R,(8) — R(3)). This term occurs because in the
proof of the theorem the dual norm inequality is applied:

(Ra(B) = R(B)T (B - B) < Q.(Rn(B) — R(B)QUB — B).
This is in some cases too rough. An alternative route is possible.

We refer the a vector * = 8** + 3*~ which trades off approximation error,
estimation error (the term involving H(-)) in Theorem 5.5.1) and -smallish
coefficients as the oracle.

Typically, the margin function G is quadratic, say G(u) = u?/2, u > 0. Then
its convex conjugate H(v) = v2/2, v > 0 is quadratic as well. The estimation
error is then

H(XFQ(L, BT, 7)> = N°T3(L, 8", 7).

Proof of Theorem 5.5.1. Define

Rem (B, 8) := R(8) — R(B) — R(B)T (B — B).

Then we have

~ ~

R(B) - R(B) + Rem(B, 8) = —R(B)" (B - B).
e So if
R(B)T(B—B) = 61027 (B — B) + 52007 (B — B) — 2)9Q(8")
we find from Condition 5.2.2
SIAQT (B = B) + 8027 (B — B) + R(B) < R(B) +2)Q(87)
(as Rem(3, ) > 0). So then we are done.

e Assume now in the rest of the proof that
R(B)T(8 = B) < 61027 (B = B) + 622907 (5 - B) = 222(87).
From Lemma 5.2.1

R (B)T (B — B) < 2Q(B) — AQ(B).

Hence by the dual norm inequality

—R( B (B - B)+0A0T(3 — B) + 82007 (6 - B)
< (Ra(B) = R(B)T (B~ B) + 510021 (B — B) + 52007 (3 — B)
+AQ(B) — AQ(B)
< AL(B—B) + 6T (B — B) + 62097 (B — B) + AQ(B) — AQ(B)
< MY QT (B = B) + A1 —954)Q7 (B — B) + 51AQT (B - B)
+ 507 (B—B)+AQT(B - B) — A (B — B) +2)Q(B7)

AYT(B = B) — (1 = 82)AQ™ (B — B) +2)\Q(57)
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(here we applied Corollary 5.4.1). In summary
~R(B)" (B~ B) + 01207 (5~ B) + 82007 (5~ B)

<AQT(B = B) = (1= 62)AQ (B — B) +22Q(87) (5.2)
But then B )
(1=382)AQ7 (8 = B) < AT (B - )
or R R
Q(3- B) < LA (3 - B).
The implies by the definition of the effective sparsity T'o(L, 37, T)
Q7 (B - B) < 7(B - H)Ta(L. B, 7).
Continuing with (5.2), we find
~RB)(B-P) + A (B-B)+ 6207 (5 - p)
< AQ(B - B) +220(87)
< S\FQ(La /BJra T)T(B - B) + 2AQ(67)

or

Rem(B, B) + A2~ (8 — B) + 5:.0QT (3 — B)

=
E>
|
=
=
+

< Ao(L, 8%, 7)7(B = B) +20Q(87)
< H(mw,ﬁw) LGB - B) +229(87)
<

H(XFQ(L, g, T)> + Rem(3, B) + 2XQ(87).

5.6 Localizing (or a non-sharp oracle inequality)

This section considers the situation where one settles for showing that 3 is
consistent in 2-norm. The local set Bjoca is taken in the set where § is Q2-close
to the candidate oracle f3.

Theorem 5.6.1 below does not require differentiability of R, and only needs
Condition 5.2.2 at 8" equal to . We call this the one point margin condition.

Condition 5.6.1 (One point margin condition) There is an increasing strictly
convez function G with G(0) = 0 and a semi-norm T on B such that for all
ﬁ € Blocal

R(B) = R(8") > G((8 — 5°)).

Notation for the candidate oracle We again fix some candidate oracle
B € Bioeal Which we assume to be the sum 8 = 31 + 5~ of two vectors 37 and
B~ with 8% having the triangle property and with Q;+ (67) = 0. Write then

Ot .= Qg}, Q= Q§+ and (for simplicity) Q := Q" + Q™.
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Theorem 5.6.1 Assume Condition 5.6.1 and let H be the convexr conjugate
of G. Suppose that for some constant 0 < Mpy.x < 00 and A¢ and for all
O0<M < Mmax

sup \[Rnw’)—R(ﬂ')]—[Rnw)—R(m]\sw. (5:3)
BEB: QB —B)<M

Let 0 < 6 <1, take A > 8\./6 and define Mg by

SAMp := AH <)\(1 +6)Ig (1; B, T>> + 8<R(,6’) - R(50)> + 160Q(587).

Assume that Mg < Mpax and that {f' € B: Q(' — B) < Mg} C Biocal- Then
Q(B — B) < Mg and hence B € Bioeal. Moreover, it holds that

R(B) = R(B) < (A\c + A)Ms + A0~ (B).
Probability inequalities for the empirical process
{(R,(8) ~ R - (R,(8) - RO 25 - 9) < M, # € B

(with 5 € B and M > 0 fixed but arbitrary) will be provided. We note that -
unlike Theorem 5.5.1 - Theorem 5.6.1 involves the approximation error R((3) —
R(B") and hence it only gives “good” results if the approximation error R(f3) —
R($°) is “small”. Perhaps in contrast to general learning contexts, this is not
too much of a restriction in certain cases. For example in linear regression with
fixed design we have seen in Section 1.2 that high-dimensionality implies that
the model is not misspecified.

Note that if B = B, then the target 3° = argminges R(8) is by definition in
the class B. If one is actually interested in a target Sy = minge R(p) outside
the class B, this target will generally have margin behaviour different from the
minimizer within B.

We remark here that we did not try to optimize the constants in Theorem 5.6.1.

Some explanation of the oracle we are trying to mimic here is in place. The
oracle is some fixed vector f* = f*T + B*~ satisfying the conditions as stated
with QF = QE** and Q7 := QBH- We take 3* in such a way that M, := Mg«
is the smallest value among all 8’s satisfying the conditions as stated and such
that in addition Q(8* — 8%) < M, where Q = QF 4+ Q~, i.e. the oracle is in a
suitable Q-neighbourhood of the target (note that € depends on 5*). We define
Biocal as Bioeal 1= BN{B": Q(B' — ) < 2M.,.}. Then obviously 3* € Biyea and
by the triangle inequality {5’ € B: Q(8 —*) < M.} C Biocal- Hence, then we
may apply the above theorem with § = §*. The situation simplifies drastically
if one can choose 3 itself as candidate oracle. See for example Subsection 6.3.1
for an illustration how Theorem 5.6.1 can be applied.
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Proof of Theorem 5.6.1. To simplify the notation somewhat we write M :=
Mpg. Define g :=t5 + (1 —t)53, where

PSS —
M+ QB -B)
Then .
5 5 MQ(B - B)
QB-08)=tQpF—-B)= ———F—< M
3 -0) =3 -9 = s
Therefore B € Biocal. Moreover, by the convexity of R,, + A2
Ru(B) + A(B) tR,(B) + tAQ(B) + (1 — ) Ru(B) + (1 — )AQ(B)

<
<

Ru(B) + A2(B).
Rewrite this and apply the assumption (5.3):

R(B) = R(B) < —|[Ru(B) — R(B)] — [Ra(B) — R(B)]| + AQUB) — AQ(B)
< AM +2QB) — AQ(B)
< AM+XYT(B = B) = A7 (B — B) + 2007 (3),

where we invoked Lemma 5.3.1.
e If AQH (3 — B) < (1 — 8)[AM + R(B) — R(B°) + 2X2(B7)]/5, we obtain
OAQT (B — B) < AM + [R(B) — R(5%)] +2702(67)
as well as
OAY (B — B) < AM +[R(B) — R(B)] +220Q(87).
So then
SANQT +Q7)(B = B) < 2AM +2[R(B) — R(8°)] +4AQ(57).
e If ANQT(B — B) > (1 — §)[AM + R(B) — R(B%) + 2XQ(57)] /6 we obtain
[R(B) — R(B)] + A2 (B — B) < AQF(B— B)/(1-9).

So then we may apply effective sparsity with stretching factor L = 1/(1 — 9).
Hence

[R( ) = R(BO)] + A (5 = B) + 622" (5 - )
AL+ 62 (B = B) + AM + [R(B) — R(%)] +220Q(57)
AL +6)7(B = B)Ta(1/(1 = 6). 8%,7) + AM + [R(8) — R(8")] + 20Q(5")

H M1+ 0)Ta(1/(1—0),8",7)) + AM +2[R(B) — R(B%)] + 22Q(87).

ININ TN

It follows hat

SANQT+Q7)(B—B) <AL (B - B) + AT (B - B)
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< H (ALa(1/(1=96),8%,7)) + AM + 2[R(8) — R(8°)] + 2XQ(5").

Hence, we have shown in both cases that

OINQT+Q7)(B-B) < H(A1+0)To(1/(1-6),8%,7))
+ 2[R(B8) — R(B°)] + 20eM + 4XQ(57)

SAM /4 + 22 M < 5AM /2

where we used the definition of M and that A > 8\./d. In turn, this implies
that )
Q@ +Q7)(B-8) <M.

For the second result of the theorem we apply the formula

R(B) = R(B) < —|[Ra(B)— R(B)] — [Rn(B) — R(B)]| + A2B) — AQ(B)
< AM +2QT(B - B) + 22007 (B)
< A+ ANM +2007(8).



Chapter 6

Some worked-out examples

6.1 The Lasso and square-root Lasso completed

We use the notation of Chapters 1 and 2. Recall the linear model
Y =XB%+e¢

with € ~ N, (0,031) and X and a given pxn matrix. We assume diag(X7 X)/n =
I. Define W := XTe/n = (Wy,...,W,)T. Note that W; ~ N (0,03 /n) for all j.

Combining Theorem 1.8.1 with Corollary 4.2.1 completes the result for the
Lasso.

Corollary 6.1.1 Let for some 0 < a <1

21og(2
Ae 1= 00 og(np/a)'

Let 0 < < 1 be arbitrary and define for X > A¢
A=A — A, A=A+ A +60X
and 5
L=——.
1—0)x
Then for all B € RP and all S we have with probability at least 1 — «
3 3 0y (2 0y(12 N21S|
2618 — Bl + X (B — BYIZ < 11X (8 - 8|12 + o2

M|B=s]l1-
S TSl

We now combine Theorem 2.5.1 with Lemma 4.2.2 to complete the result for
the square-root Lasso.

Corollary 6.1.2 Define for some positive o and « satisfying o + a < 1 the

quantities
R=/20e@/0) > <1 - 2\/log(1/a)>.
n—1 n

67
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Assume for somen > 0

Al < 20(\/1 T - 1>, M(l—n) > R,

For arbitrary 0 < § < 1 define

X == do(1—7)—R,
5\0 = )\0(1+77)+R+(5A0
and _
(=8N

Then for all B and S, with probability at least 1 — a — a we have
2600[18 = Blhllelln + 1X(3—8%)II2

A3IS]llells
< XB= B2+ 2 4 (1 allB-s]l1-
< 1X(B =695+ 2(L.5) + 4o (L +n)llellnll -5l
6.2 Least squares loss with ()-structured sparsity com-

pleted

We use the notation of Chapter 3. Again the linear model is examined:
Y =X3%+¢

with € ~ Ny (0,021) and X and a given p x n matrix with diag(X7X)/n = I.
We set W := XTe/n = (Wy,...,W,)T. As in Section 3.9 we let A be a convex
cone in R =: [0, 00)” and define

Q(ﬁ)':minli[w—l—a} B € RP
' a€d 2~ | a; 717 '

For an allowed set S such that Ag C A (see Lemma 3.9.4) we define Eg(.A) as
the set of extreme points of AsN{|las|1 < 1} and £79(A) as the set of extreme
points of A_g N {||la_s|l1 < 1}. We now assume both £g(A) and £79(A) are
finite and define for positive error levels a1 and o such that aq + ag <1

7?59 = min{ (1 +2 1og<|550514)’> + 2log<’gsogz4)‘>> ,2log<2(‘j‘)}

and

oinf (142 (L) (A0 )t (22D .
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We obtain from Lemma 4.5.1 that with probability at least 1 — a1 — ao,
Q.(XFe)/n < Xg, Q79 (XTge)/n < A5,

(Recall that Q.(XTe)/n < max{Q.(XZe)/n, 0 ¥(XTge)/n}, see Lemma 3.4.1.)
Theorem 3.6.1 then leads to the following corollary.

Corollary 6.2.1 Let Q be the norm generated from the conver cone A and
consider the Q-structured sparsity estimator

A~

B = arg min{HY — XB|I2 + QAQ(ﬂ)}

Assume for all allowed sets S that Es(A) and E5(A) are finite. Let, for allowed
sets S, the constants g and \=° be defined as above. Let §1 > 0 and 0 < ds < 1
be arbitrary. Take \ > max{\~°: S allowed} and define

A=2A=A" Ni= A+ A+ 5

and

A
(1 =)\

Then for any allowed set S and any B, with probability at least 1 — o — o it
holds that

L=

20100(Bs — B) + 20007 (B_g) +IX(B - 8O)II2
NE
< XB =85+ = + 42 (B-s).
9% (L, S)
For the group Lasso (see Example 3.9.1) we may improve the lower bound on the

tuning parameter. We assume orthogonal design within groups X gt Xg,/n=1.
Equivalently, one may define the penalty as

T
Qgroup(8) == > VIGil X Ba,lln, B € RP.
t=1

Combining Corollary 4.6.1 with Theorem 3.6.1 we arrive at the following.

Corollary 6.2.2 Consider the group Lasso as in Example 3.9.1:

3 :=arg min{HY - XB|2 + 2)\Qgroup(ﬂ)}.

Assume within-group orthogonal design. Let 0 < § < 1 be arbitrary. Take

/
A> A= \‘;%(1 49 log(m/a) N 210g(m/a)>1 2’

min Tmin
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where T' is the number of groups and Tmin := min{|G;| : j =1,...,m} is the
minimal group size. Define

A== A, A=A+ A +0A

and 5
L =—-—.
(I=9)A

Then for any allowed set S and any B, with probability at least 1 — « it holds
that

25AQgroup(/B - 5) + HX(B - BO)”%

S
< IX(B— 2 + 2L

(£2 (L S) +4>\Qgroup(575)'
(9] I

group

The wedge penalty (see Example 3.9.2) corresponds to taking

Qwedge(B) = arg min
a1>...2a,>0, |lall1=1

In the case of orthogonal design we have an improved version of the generic
Corollary 6.2.1. For simplicity we take 61 = §o =: § and a3 = s =: « in this
case.

Corollary 6.2.3 Consider the wedge estimator from Example 3.9.2:

~

B = argmin{HY — X812 + 2/\Qwedge(ﬂ)}.

Let 0 < § < 1 be arbitrary. Suppose orthogonal design: S =1 (and hence
p<n). Let 0 < a<1/2. Take

1/2
A= 20 (1492, log( 1EYY) 4 o10g( L1 .
Vn a o'

A= A=A, A= A+ A+ 6

Define

and 5
L.=—.
(1—=0)A

Apply Lemma 4.7.1 to find that for any allowed set S and any 3, with probability
at least 1 — 2« it holds that

25& Qwedge(/é_ﬁ) + HX(B_BO)H’?L

2?1
< X8 =B + 5 + 4\ vedge (B-5)
qZ)?lwedge (L’ S) :

where Qwedge = Qwedge("S) +Q.7

wedge



6.3. LOGISTIC REGRESSION 71

6.3 Logistic regression

Let (X1,Y1),...,(X,,Y,) be independent observations, with ¥; € {0,1} the
response variable and X; € X C RP a co-variable (i = 1,...,n). The loss for
logistic regression is

pp(z,y) == —yxf +d(zf), B € RP

where

d(€) =log(1 +¢b), £ €R.

We take the norm  in the penalty to be the ¢;-norm. Furthermore, we im-
pose no restrictions on 3, i.e. B := RP. The ¢;-regularized logistic regression
estimator is then

B = arg min{i Z [—Y;Xiﬁ + d(Xzﬁ)] + )‘HBHI}

RP
pe i=1

Define fori=1,...,nand z € X

0(x) —E(YIX: = 2). () = lo ()

We assume the generalized linear model is well-specified: for some 3°
fox) =28V zeX.

In the high-dimensional situation with rank(X) = n < p, and with fixed design,
we can take here ¥ = {X1,..., X,,} and then there always is a solution 3° of the
equation fO(z) = 28°, 2 € X. In what follows we consider fixed and random
design, but in both cases we take the risk for fixed design, which we write as

R(B|IX) = %Z [—d(XzﬂO)Xzﬂ +d(X:B)|, B €RP.

=1

We have
.. 65
4= Tree

It follows that for |3 — 8%y < M

d(xf) = 1/C3(x),

where

1 1 1
C?\/l(m) - (1 _I_eﬁ()x—i-”mT”mM) (1 B 1 _i_egox—HxT”ooM)'
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6.3.1 Logistic regression with fixed, bounded design

We assume that X is fixed and that for & := X7 X /n, diag(2) = I, i.e., the de-
sign is normalized. We write K := maxj<;<, | X;| and Ko := maxj<;j<p | fO(X;)]

and
- 1 1 1
@ T\ 1 4 eKotEy 14 e KoK )

Theorem 6.3.1 Let )\, := \/2log(2p/«). Let further, for some 0 < § < 1,
A > 8)A/(1—0). Define

A= A=A, A=A+ A + 0

and 5
Li=—,.
(1—=0)A

Furthermore, define for any vector f € RP and set S C {1,...,p}.
202)2(1 + 62)| 9]

SAMpg g := - +8(R(B|X) — R(B% X)) + 16| B_s]1-
8.5 L5 (R(BIX) — R(87|X)) 18-sll
For those B and S such that Mg g < 1/2 we have with probability at least 1 — «
. A C?)\2|S|
OA||B — + R(B|X) < R(B|X) + —=———F+2)\||B=5]1-
AllB = Bl + R(B|X) < R(B|X) 202(L. ) 18-sll1

6.4 Trace regression with nuclear norm penalization

Suppose

Y, = trace(XiBO) +e&,1=1,...,n,
where B is a p x ¢ matrix and X; (i = 1,...,n) is a ¢ x p matrix with ¢ < p.
Writing

X;8° := trace(X;BY),
where X := vec(X]), 8° := vec(B®), we see that this is the linear model:
Y1 :Xi60+€i, 1=1,...,n.

The reason it is written in trace form is because actually the structure in £°
is now not assumed to be in the sparsity of the coefficients, but rather in the
sparsity of the singular values of BY. The norm induces this sparsity structure
is the nuclear norm

Q(ﬁ) = HB”nucleara B = VeC_l(ﬂ),

where || ||nuclear 1S the nuclear norm. In what follows, we will identify matrices B
with their vectorization vec(B) and simply write (B) = || B||nuclear- Recall that
|| - ||2 is used as notation for the Frobenius norm when matrices are concerned.
For a matrix A we let A2, (A) being the largest eigenvalue of AT A.

max
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6.4.1 Some useful matrix inequalities

Lemma 6.4.1 Let A be a p X ¢ matriz. Then

[ Allnuctear < v/rank(A)||Allo.

Let P be a p x s matriz with PTP =1 and s < p. Then
HPPTA||2 < \/gAmaX(A)

and
IPPT A2 < ||A]2.

Proof of Lemma 6.4.1. Let r := rank(A). Write the singular value decom-
position of A as

A= PahaQh

with PIPy = I, Q1Qa = I and Ay = Aa1,...,Aa,. Then ||Alnuclear =
Sy Aax and [|A||3 = trace(ATA) =377 _, A%x,k;' The first result thus follows
from |lul|1 < /r||ul|2 for a vector u € R".

For the second result we introduce the p-dimensional j-th unit vector e;, (j =
1,...,p). Then

(A)|PP e

max

e, PPTAAT PP e; < A}

and hence

p
|IPPTA|5 = trace(PPTAATPPT) =) el PPTAATPP e,
j=1

P
< Apax(A) D IIPPTes|5 = Af e (A)trace(PPT)

max
=1

J:
2
= sALax(4).
For the last result we write

|A||%? = trace(AT A) = trace((PPTA + (I — PP)T AT (PPTA+ (I — PPT)A))
= trace((PPTA)T(PPT A)) + trace(((I — PPT)A)T (I — PPT)A)

> trace((PPTA)T(PPT A)) = | PPT A|3.
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6.4.2 Dual norm of the nuclear norm and its triangle property

The dual norm of Q = || + ||nuclear 1S
Qi = Amax.
Moreover (see Watson [1992])

0| Blnuctear = {Z = PQT + (I — PPTYW (I — QQT) : Apax(W) =1}.

Let the p X ¢ matrix B have rank s and singular value decomposition
B = PAQT,

with P a p x s matrix, Q a ¢ x s matrix, PTP = I, QTQ = I, and A =
diag(Aq,...,As) the diagonal matrix of non-zero singular values, where A; >
..>Ag> 0.

Lemma 6.4.2 The norm Q = || - ||lnuclear has the triangle property at B, with
QL(B") = Vs(|PP"B'lla + |1B'QQ™ |2+ [ PPT B'QQ"|2)

and
Qg(B/) = H(I - PPT)B/(I - QQ)THnuclear-

Moreover
” ’ Hnuclear < QE + QZ}

Remark 6.4.1 As for the last result, note the contrast with weakly decompos-
able norms as defined in Section 3.4, which have Q > QT + Q™.

Proof of Lemma 6.4.2. Write for Z € 9| B||nuclear
Z =71+ Zs, 71 = PQT, Zy = (I - PPTYW(I — QQT).
We have

trace(Z{ B') = trace(QPT B') = trace(PTB'Q)
= trace(PTPPTB'QQTQ) = trace(QPT PPTB'QQT)
< HPPTB,QQT”nuclear

since AmaX(PQT) = 1. Moreover

trace(Z3 B') = trace((I — QQTYWT(I — PPT)B')
= trace(W?(I — PPT)B'(I — QQ™)).

Hence, there exists a W with Apax(WW) = 1 such that

trace (WL B') = ||(I — PPT)B'(I — QQ")||huclear-
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We thus see that (replacing B’ by B’ — B)

max  trace( Z' (B’ — B))
ZGaHBHnuclear

_ . T T o T I
= Amanxl(%c)ﬂtrace((l QQ )W*(I—-PP")(B —B))

+  trace(QPT (B’ — B))
>[I = PP")B'(I = QQ")lletear — [PPT(B' = B)QQ |lnuctear-
Now use Lemma 6.4.1 to get
IPPT(B' = B)QQ [[nuctear < Vs|[PPT(B' = B)QQ" |2 < Q¥ (B' - B).
Obtaining the second result of the lemma is almost trivial: for all B’

1B |huctear = ||[PPTB' + B'QQ"T — PPTB'QQ"™ + (I — PPT)B'(I — QQ")||nuctear
< ||PPTB'||nuctear + ||B'QQT || nuclear
+ [IPPTB'QQ" |lnuctear + |(I — PPT)B'(I — QQ")|nuctear
< Vs(|PPTB'||l2 + |B'QQ"||l2 + |PPTB'QQ"||2)
+ (I = PP")B'(I — QQ")l|nuctear

where we invoked Lemma 6.4.1. O

Lemma 6.4.3 Let
Q.= QE + Q5

with ng, and (5 as in Lemma 6.4.2 Then

Q*() < Amax(')'

Proof of Lemma 6.4.3. This follows from || - ||nuclear < €2 (see Lemma 6.4.2)
and the fact that the nuclear norm has dual norm A, ax.

O

Notation for the candidate oracle We will next provide the notation for
the candidate oracle B which we might aim at mimicking. Recall that ¢ < p.
Let
B = PAQT
with P a p x ¢ matrix, Q a ¢ x ¢ matrix, PTP = I, QTQ = I, and A =
diag(A1,...,Aq) where Ay > ... > Ay
Write
s q
B=BT+ B, Bt = ZAkPkQ;f, B™ = Z ALPQT. (6.1)
k=1 k=s+1
We see that .
HB_Hnuclear = Z Aka QE+(B_) =0.
k=s+1
Define Q2 := Qg+ + Q5.
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6.4.3 An oracle result for trace regression with least squares
loss

We consider the nuclear norm regularized estimator

n

= S ; - . 2
B = argmén{Z(YZ trace(X;B))"/n + 2)\HB||nudear}.

i=1

Definition 6.4.1 Let L > 0 be some stretching factor. Suppose B has singular
value decomposition PAQT. Let s := rank(B). We define the || - ||nuclear-
compatibility constant at B as

n
N ) S
(b?mclear(L? B) ‘= min { E E 1 traceQ(XiB/) :
1=

VSIPPTB s + [BQQT | + | PPTBQQT ) = 1.
(7~ PPY B~ Q) s < L}

Corollary 6.4.1 Application of Theorem 5.5.1 to the nuclear norm penalty
gives the following. Let B = Bt + B~ where B™ and B~ are given in (6.1).

Let now .
>\e > Amax (Z E’LX’L) /’I’L

i=1
For A> X, A= A=A, Ai= A+ A+ 0N, L:=)\/((1-6)N), we have

n

A 1 2 v (B _ o
A2 B — B)nuclear + nZtrace (Xi(B—DB"))/n

=1
1 & SA?
< — Ztrace2(Xi(B — BO)) +—+ 4>\HB_Hnuclear-
" =1 ¢?1uclear(L7 B+>

We refer to Section 7?7 for a probability inequality for the maximal eigenvalue
Amax(D°1 1 €X;)/n in the context of matriz completion.

Recall that (see Lemma 6.4.2) || - [|puclear < £. Hence from Corollary 6.4.1 one
may also establish a bound for the nuclear norm estimation error.

6.4.4 Robust matrix completion

Let B be the collection of p x ¢ matrices with all entries bounded by some
constant 1 > 0:
B:={B:| Bl <n}

The bounded parameter space B allows one to take Bjyca1 = B when applying
Theorem 5.6.1. We will not prove a sharp oracle inequality in this subsection
because the loss is not twice differentiable. We conjecture though that lack of
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differentiability per se is not a reason for impossibility of sharp oracle inequal-
ities.

Let X be the space of all p x ¢ matrices X consisting of zeroes at all entries
except for a single entry at which the value equal to one:

0O --- 0 --- 0 0
0 1 0 0
X = 0 0 0 0
O --- 0 --- 0 0

Such matrices - called masks - have also been studied in Section ?77. There are
g x p such matrices. We let {X1,..., X, } be i.i.d. with values in X'. Consider
the least absolute deviations estimator

A~

- [1¢
B:= argglené{n Zl |Y; — trace(X;B)| + )\HBHnudear}.
1=

Theorem 6.4.1 Let B be given in (6.1). Suppose that €1, ..., €, are i.i.d. with
median zero and with density f. with respect to Lebesgue measure. Assume that
for some positive constant C' and some n > 0.

fo(u) > 1/C? V |u| < 2n.

Define for Cy is suitable universal constant

Ae = 400\/T\/10g(p+®
q n

+ 4Cy log(l—i—q)(bg(pn—’_(]))_i_ 8108‘7(11/0‘)_

Take for some 0 < 0 <1 XA > 8A./d and define Mp by
SAMp = 6C*\*(1 + 6)*pgs + 8 (R(B) - R(BO)> + 16| B™ || nuctear-

Then with probability at least 1 — o we have Q(B — B) < Mg and

R(B) — R(B) < (Ae + A)Mp + 2| B™ || nuclear-

Asymptotics and weak sparsity Suppose that glog(1 + ¢) is of small order
n/logp. Theorem 6.4.1 shows that for a suitable value for the tuning parameter

A of order A < y/log p/nq one has

pslogp
n

R(B) ~ 75 = O (P 252 1 R(B) ~ B(E) +\[ L |5 e ).
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This implies

2
. p“qslogp
1 - Boll = 0w (PE0EL

lo _
(R(E) = BB + 9y 2B i )
For example, taking B = BY and letting sy be the rank of B°, we get

B 2gslo
15 - Bl = Op (P1EL ).

Admittedly, this is a slow rate, but this is as it should be. For each parameter,
the rate of estimation is \/pg/n because we have only about n/(pq) noisy obser-
vations of this parameter. Without penalization, the rate in squares Frobenius

norm would thus be )
pg  pq
pgx — = .
n n
With penalization, the estimator mimicks an oracle that only has to estimate

pso (instead of pq) parameters, with a log p-prize to be paid.

Instead of assuming BY itself is of low rank, one may assume it is only weakly
sparse. Let B? have singular values {A9}?_,. Fix some 0 < r < 1 and let

q

o= S IAY

k=1

Then we obtain (Problem ??) (take B = B? and use the same arguments as in
Lemma 1.10.1 in Section 1.10)

. 2 10 1—7r
15— B3 = Op (”ﬂ’) e (6.2

T

6.5 Sparse principal components

Consider an n x p matrix X with ii.d. rows {X;}7,. Let ¥ := X7X/n and
Yo := ES. In this section the estimation of the first principal component
¢" € RP corresponding to the largest eigenvalue ¢2.. = Apax(3o) of Zg is
studied. The parameter of interest is 3° := ¢’¢max, so that [|3°)2 = &2,
(since the eigenvector ¢¥ is normalized to have || - ||2-length one). It is assumed
that 30 is sparse.

Denote the Frobenius norm of a matrix A by [|A]|a:
2 2
1AIZ =" > A%
ik
We use the ¢1-penalized estimator

A~

1 .
= inq —[|2 — BBT|3 + A
b= argmind 115 - 55715 + Nl }.
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with A > 0 a tuning parameter. The estimator is termed a sparse PCA estima-
tor.

For the set B we take an “fy-local” set:
B:={BeR’: |3—p%2<n}

with n > 0 a suitable constant. To get into such a local set, one may have to
use another algorithm, with perhaps a slower rate than the one we obtain in
Theorem 6.5.1 below. This caveat is as it should be, see Berthet and Rigollet
[2013]: the fast rate of Theorem 6.5.1 cannot be achieved by any polynomial
time algorithm unless e.g. one assumes a priori bounds. In an asymptotic
setting, the constant 7 is not required to tend to zero. We will need 37 to be
smaller than the gap between the square-root largest and square-root second
largest eigenvalue of .

In the risk notation: the empirical risk is

. 1 7a 1
Ra(B) = |2 = 8" I3 = =587 28 + 11182
Here, it may be useful to note that for a symmetric matrix A
| A3 = trace(A?).

Hence

1887113 = trace(887 88") = ||Bll5trace(B67) = |13

The theoretical risk is

R(B) = 567208 + 2118l

6.5.1 Two-point margin and two point inequality for sparse
PCA

By straightforward differentiation

R(B) = —%oB + ||B]135-
The minimizer 5% of R(j3) satisfies R(ﬂo) =0, i.e.,

0" = [18°158°.
Indeed, with 8% = ¢maxq”

2050 = Qbmaxzoqo = gb?naxqo
= ||¢maXQOH%¢maxqo = HﬁOH%BO

We moreover have

R(B) = %0 + ||8I13I + 2887,
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with I denoting the p x p identity matrix.

Let now the spectral decomposition of ¥ be
20 = Q®2QT7

with @ = dlag(¢1¢p)7 (bl > e 2 (bp > 07 and with Q = (Q17--~7Qp)7
QQOT = QTQ = I. Thus ¢max = ¢1 and ¢° = q;. We assume the following
spikiness condition.

Condition 6.5.1 For some p > 0,

¢max2¢j+p7 \V/j#l

Let, for § € R?, Amin(R(5)) be the smallest eigenvalue of the matrix R(3).

Lemma 6.5.1 Assume Condition 6.5.1 and suppose that 3n < p. Then for all
B € RP satisfying |3 — 8°|l2 < n we have

Amin(R(8)) = 2(p — 31).

Proof of Lemma 6.5.1 . Let B € R? satisty |5 — %2 < 1. The second
derivative matrix at g is

R(B) = —To+|Bl57+285"
p p
= 813> _aiaf = #laiq) +288"
o o

p
= (1815 = ¢t mral + Y _(IBI3 — ¢)gja] + 285"

j=2
Since by assumption || — 8°||2 < 7, it holds that

HBHQ > HﬁOHQ — 1 = Gmax — 1
It follows that R
Hﬁ”% > ¢12nax — 21Pmax
and hence for all 7 > 2
||B”% - ¢J2 > 2p¢max - 27]¢max = 2(:0 - n)gbmax-

Moreover, for all z € RP

(@) = (@"(B-p8%) +a"p")?

= ("B -8 +2a" B (" (5 - 8°) + (T 8%

($T60)2 - 2¢max77||x”§

v

and 3
(18115 — Prax) 0101 T > —20Pmax]|2 13-
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We thus see that

p
ZTRB)r > 2027 8°)? — dndmax|z]I3 + 200 — 1) bmax Y _ (27 ¢5)?
=2
) J
> 2(ﬂ - n)¢max Z(J:TQJ')2 - 477¢max||$”%
j=1

= 2(:0 - 377)¢max||$||g

By a two term Taylor expansion we have
) 1 .~
R(8) = R(B) = R(8")" (8 - 8') + 56~ BYTR(B)(B - B)
with 3 an intermediate point. Hence the two point margin condition holds with

G(u) = 2(p — 3N)pmax® , u > 0, 7 = || - ||l2, and Bioeal = B = {B’ € RP :=
18" = B%l2 <}

6.5.2 Effective sparsity and dual-norm inequality for sparse PCA

We have seen in Subsection 6.5.1 that the (two-point) margin condition holds
with norm 7 = || - ||2. Clearly for all S

185l < V/slBll2-

The effective sparsity depends only on 3 via its active set S := Sz and does not
depend on L:

T2 (L, B, - [l2) = I].

The empirical process is
(RalB) = R(5)] = [Ra(8) = R3] = 56TWH = S5,

where W := 3 — >o. Thus

IN

(Bo(8) = R(B)]  [R(8) — R(ﬁ)}] 2

BTW (B — 5)’ + (B =B)TW(B - B)

< 2|8 = BILlIWBlls + 118" = BITIW .

N

6.5.3 A sharp oracle inequality for sparse PCA

Theorem 6.5.1 (Sketch) Suppose the spikiness condition (Condition 6.5.1).
Let B :={f € R? : || — %2 < n} where 3n < p. Fiz some 3 € B. Let for
W=%-%

A 2 2 WB]loo + [TV
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Let A > 8\./d Define A := X\ — A\ and A=A+ A+ O\ Furthermore, define
for S C{1,...,p}
A2(1+6)2]9]

0AMg g := 200 — 31) dommn + 8(R(B) — R(8%)) + 16[|B—s]|1-

Assume that Mg < 1. Then - under some additional assumptions (bounded
data) - R R )
OA|B — Bl + R(B) < R(B) + X*|S|/8 + 2X]| B-s]|1.

Note that we did not provide a high probability bound for 2||Wj||ec + || W||cc-
This can be done assuming for example a bound for || X{ ||«. The variable
X18, B € B, has a bounded second moment: E(X;3)? < ¢2 .. (émax + 1)%
One can then apply Diimbgen et al. [2010]. One then establishes the following
asymptotics.

Asymptotics For simplicity we take 8 = 5% and S = Sp. Suppose plogp/n =
o(1), | X1lleo = O(1), Amax = O(1) and 1/(p — 3n) = O(1). Then one may take
A =< y/log p/n. Assuming sg+/logp/n is sufficiently small (to ensure Mgz, 5, < 1)
one obtains || — 8°||3 = Op(sologp/n) and |3 — B°||1 = Op(so+/logp/n).



Bibliography

F. Bach. Structured sparsity-inducing norms through submodular functions.
In Advances in Neural Information Processing Systems (NIPS), volume 23,
pages 118-126, 2010.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-
inducing penalties. In Foundations and Trends in Machine Learning, vol-
ume 4, pages 1-106, 2012.

A. Belloni, V. Chernozhukov, and L. Wang. Square-root Lasso: pivotal recovery
of sparse signals via conic programming. Biometrika, 98(4):791-806, 2011.

Q. Berthet and P. Rigollet. Complexity theoretic lower bounds for sparse prin-
cipal component detection. In Conference on Learning Theory, pages 1046—
1066, 2013.

L. Birgé and P. Massart. Minimum contrast estimators on sieves: exponential
bounds and rates of convergence. Bernoulli, 4(3):329-375, 1998.

M. Bogdan, E. van den Berg, W. Su, and E. Candes. Statistical estimation and
testing via de sorted 11 norm, 2013. arXiv:1310.1969.

P. Biithlmann and S. van de Geer. Statistics for High-Dimensional Data: Meth-
ods, Theory and Applications. Springer, 2011.

F. Bunea, J. Lederer, and Y. She. The group square-root lasso: Theoretical
properties and fast algorithms. IFEE Transactions on Information Theory,
2:1313-1325, 2014.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization
algorithm using Bregman functions. SIAM Journal on Optimization, 3(3):
538-543, 1993.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1998.

L. Diimbgen, S.A. van de Geer, M.C. Veraar, and J.A. Wellner. Nemirovski’s
inequalities revisited. The American Mathematical Monthly, 117:138-160,
2010.

83



84 BIBLIOGRAPHY

O. Giiler. On the convergence of the proximal point algorithm for convex
minimization. SIAM Journal on Control and Optimization, 29(2):403-419,
1991.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with
sparsity inducing norms. Journal of Machine Learning Research, 12:2777—
2824, 2011.

V. Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems: FEcole dEté de Probabilités de Saint-Flour XXXVIII-
2008, volume 38. Springer Science & Business Media, 2011.

V. Koltchinskii, K. Lounici, and A.B. Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. Annals of Statistics,
39(5):2302-2329, 2011.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics, pages 1302—-1338, 2000.

K. Lounici, M. Pontil, S. van de Geer, and A.B. Tsybakov. Oracle inequalities
and optimal inference under group sparsity. Annals of Statistics, 39:2164—
2204, 2011.

A. Maurer and M. Pontil. Structured sparsity and generalization. Journal of
Machine Learning Research, 13:671-690, 2012.

C.A. Micchelli, J.M. Morales, and M. Pontil. A family of penalty functions for
structured sparsity. In Advances in Neural Information Processing Systems,
NIPS 2010, volume 23, pages 1612-1623, 2010.

N. Stadler, P. Bihlmann, and S. van de Geer. /{i-penalization for mixture
regression models. Test, 19(2):209-256, 2010.

N. Stadler, P. Bithlmann, and S. van de Geer. Rejoinder ¢;-penalization in
mixture regression models. Test, 19(2):280-285, 2010.

B. Stucky and S. van de Geer. Sharp oracle inequalities for square root regu-
larization, 2015. arXiv:1509.04093.

T. Sun and C.-H. Zhang. Comments on: ¢;-penalization in mixture regression
models. Test, 19(2):270-275, 2010.

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99:879—
898, 2012.

T. Sun and C.-H. Zhang. Sparse matrix inversion with scaled lasso. The Journal
of Machine Learning Research, 14(1):3385-3418, 2013.

R. Tibshirani. Regression analysis and selection via the Lasso. Journal of the
Royal Statistical Society Series B, 58:267-288, 1996.

S. van de Geer. Weakly decomposable regularization penalties and structured
sparsity. Scandinavian Journal of Statistics, 41(1):72-86, 2014.



BIBLIOGRAPHY 85
S.A. van de Geer. Least squares estimation with complexity penalties. Mathe-
matical Methods of Statistics, 10:355-374, 2001.

S.A. van de Geer. The deterministic Lasso. In JSM proceedings, 2007, 140.
American Statistical Association, 2007.

G.A. Watson. Characterization of the subdifferential of some matrix norms.
Linear Algebra and its Applications, 170:33-45, 1992.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society Series B, 68:49, 2006.

X. Zeng and A.T.F. Mario. The ordered weighted 11 norm: Atomic formulation,
dual norm, and projections, 2014. arXiv:1409.4271.



