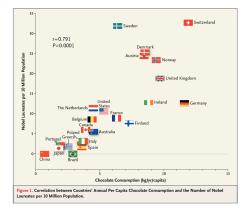
Causality

"According to studies..."



• What would be the right question in this setting?

- What would be the right question in this setting?
- Numerous studies concern themselves only with correlation

- What would be the right question in this setting?
- Numerous studies concern themselves only with correlation
- This can be very misleading

- What would be the right question in this setting?
- Numerous studies concern themselves only with correlation
- This can be very misleading
- http://tylervigen.com/spurious-correlations

Simpson's Paradox

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	$78\% \ (273/350)$	93% (81/87)	73% (192/263)
Treatment B: Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

Figure: Success rates of two treatments for kidney stones

• Treatment B seems to perform better overall (83%)

Simpson's Paradox

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	$78\% \ (273/350)$	93% (81/87)	73% (192/263)
Treatment B: Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

Figure: Success rates of two treatments for kidney stones

- Treatment B seems to perform better overall (83%)
- But treatment A performs better in both settings

• Correlation vs. Causality

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions
- Correlation does not imply causality

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions
- Correlation does not imply causality
- · Mostly we're interested if A is having a direct effect on (causing) B

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions
- Correlation does not imply causality
- · Mostly we're interested if A is having a direct effect on (causing) B
- What are possible causal explanations if A is correlated to B?

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions
- Correlation does not imply causality
- Mostly we're interested if A is having a direct effect on (causing) B
- What are possible causal explanations if A is correlated to B?
 - i) A causes B, ii) B causes A or iii) hidden actor Z causes A and B

- Correlation vs. Causality
- Missing background knowledge can lead to false conclusions
- Correlation does not imply causality
- Mostly we're interested if A is having a direct effect on (causing) B
- What are possible causal explanations if A is correlated to B?
 - i) A causes B, ii) B causes A or iii) hidden actor Z causes A and B
 - Reichenbachs common cause principle is provable

Hidden Cause/Actor

 In 1999 research established a significant correlation between the presence of a nightlight in a child's bedroom and myopia (shortsightedness).

Hidden Cause/Actor

- In 1999 research established a significant correlation between the presence of a nightlight in a child's bedroom and myopia (shortsightedness).
- In 2000 follow-up research found out that parents with myopia are more likely to put a nightlight in their child's bedroom. Their children also are more inclined to develop myopia for genetical reasons.

Motivation

"Correlation does not imply causation" $\Leftrightarrow \mathbb{P}^{X} \neq \tilde{\mathbb{P}}^{X}$

A graph *G* = (*V*, *E*) consists of nodes *V* and edges *E* ⊆ *V*² with (*v*, *v*) ∉ *E* ∀*v* ∈ *V*.

- A graph $\mathcal{G} = (V, \mathcal{E})$ consists of nodes V and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E} \quad \forall v \in V.$
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*

- A graph *G* = (*V*, *E*) consists of nodes *V* and edges *E* ⊆ *V*² with (*v*, *v*) ∉ *E* ∀*v* ∈ *V*.
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*
- an edge is undirected if (i, j) ∈ E and (j, i) ∈ E, otherwise it is directed

- A graph $\mathcal{G} = (V, \mathcal{E})$ consists of nodes V and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E} \quad \forall v \in V.$
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*
- an edge is undirected if (i, j) ∈ E and (j, i) ∈ E, otherwise it is directed
- 3 nodes form an **immorality (or v-structure)** if one is the child of the two others that themselves are not adjacent

- A graph $\mathcal{G} = (V, \mathcal{E})$ consists of nodes V and edges $\mathcal{E} \subseteq V^2$ with $(v, v) \notin \mathcal{E} \quad \forall v \in V.$
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*
- an edge is undirected if (i, j) ∈ E and (j, i) ∈ E, otherwise it is directed
- 3 nodes form an **immorality (or v-structure)** if one is the child of the two others that themselves are not adjacent
- a (directed) path is a sequence of distinct *i*₁,..., *i*_n ∈ *V* with a (directed) edge between *i*_k and *i*_{k+1} for all *k* = 1,..., *n* − 1

- A graph *G* = (*V*, *E*) consists of nodes *V* and edges *E* ⊆ *V*² with (*v*, *v*) ∉ *E* ∀*v* ∈ *V*.
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*
- an edge is undirected if (i, j) ∈ E and (j, i) ∈ E, otherwise it is directed
- 3 nodes form an **immorality (or v-structure)** if one is the child of the two others that themselves are not adjacent
- a (directed) path is a sequence of distinct *i*₁,..., *i*_n ∈ *V* with a (directed) edge between *i*_k and *i*_{k+1} for all *k* = 1,..., *n* − 1
- all *j* with a directed path from *i* to *j* are called **descendants** of *i*, the set of all descendants of *i* is denoted by DE^G_i

- A graph *G* = (*V*, *E*) consists of nodes *V* and edges *E* ⊆ *V*² with (*v*, *v*) ∉ *E* ∀*v* ∈ *V*.
- *i* is a **parent** of *j* if $(i, j) \in \mathcal{E}$ and $(j, i) \notin \mathcal{E}$, i.e. *j* is a child of *i*
- an edge is undirected if (i, j) ∈ E and (j, i) ∈ E, otherwise it is directed
- 3 nodes form an **immorality (or v-structure)** if one is the child of the two others that themselves are not adjacent
- a (directed) path is a sequence of distinct *i*₁, ..., *i*_n ∈ *V* with a (directed) edge between *i*_k and *i*_{k+1} for all *k* = 1, ..., *n* − 1
- all *j* with a directed path from *i* to *j* are called **descendants** of *i*, the set of all descendants of *i* is denoted by DE^G_i
- we identify the nodes $j \in V$ with the random variables $X_j \in \mathbf{X}$

DAGs

 a directed acyclic graph (DAG) is G in which there exists no (i, j) with directed paths from i to j and from j to i, and all the edges are directed

DAGs

- a **directed acyclic graph (DAG)** is *G* in which there exists no (*i*, *j*) with directed paths from *i* to *j* and from *j* to *i*, and all the edges are directed
- in a DAG, the disjoint A, B ⊂ V are d-separated by a also disjoint
 S ⊂ V if every path between nodes in A and B is blocked by S, i.e. for every path i₁ to in:

-
$$i_k \in S$$
 and $i_{k-1} \rightarrow i_k \rightarrow i_{k+1}$ or $i_{k-1} \leftarrow i_k \leftarrow i_{k+1}$ or $i_{k-1} \leftarrow i_k \rightarrow i_{k+1}$

- $i_{k-1} \rightarrow i_k \leftarrow i_{k+1}$ and neither i_k nor any of its descendants is in S

Topological Ordering

Proposition:

For each DAG exists a **topological ordering** $\pi \in S_p$, that is a bijective mapping

$$\pi: \{\mathbf{1}, \dots, \mathbf{p}\} \to \{\mathbf{1}, \dots, \mathbf{p}\}$$

that satisfies

$$\pi(i) < \pi(j)$$
 if $j \in DE_i^\mathcal{G}$

Structural Equation Model

Definition:

A structural equation model (SEM) is $S := (S, \mathbb{P}^N)$, where $S = (S_1, ..., S_p)$ are equations

$$S_j$$
: $X_j = f_j(PA_j, N_j), \qquad j = 1, \dots, p$

Interventions

Having established the SEM structure, we now can construct new distributions by changing (intervening upon) structural equations.

Definition (Intervention Distribution)

Consider the distribution SEM $(S, \mathbb{P}^N) \rightsquigarrow \mathbb{P}^X$. We now can replace one or multiple equations and obtain a new SEM \tilde{S} . The new distribution $\mathbb{P}^N_{\tilde{S}}$ is called the **intervention distribution** and the variables whose structural equations have been changed have been intervened on. We introduce the *do* operator:

$$\mathbb{P}_{\widetilde{S}}^{\mathbf{X}} =: \mathbb{P}_{S}^{\mathbf{X}|do(X_{j}=\widetilde{f}(\widetilde{\mathbf{PA}}_{j},\widetilde{N}_{j}))}$$

Example for an Intervention (Kidney Stones)

• New and old N's need to be independent

- New and old N's need to be independent
- Two special cases

- New and old N's need to be independent
- Two special cases
 - The new equation can either keep the same parents but change their influence or restructure the noise component (called imperfect)

- New and old N's need to be independent
- Two special cases
 - The new equation can either keep the same parents but change their influence or restructure the noise component (called imperfect)
 - The new equation is of the type $do(X_j = a)$ (called perfect)

- New and old N's need to be independent
- Two special cases
 - The new equation can either keep the same parents but change their influence or restructure the noise component (called imperfect)
 - The new equation is of the type $do(X_j = a)$ (called perfect)
- Example: Suppose ${\mathcal S}$ is

$$X = N_X$$

$$Y = 4 \cdot X + N_Y$$

with N_X , $N_Y \sim \mathcal{N}(0, 1)$ Compare the intervention distribution of Y for do(X = 2) and do(X = 3) with \mathbb{P}_S^Y ? Now reverse the roles of X and Y. What happens?

Causal Effect

Definition (total causal effect) Given a SEM \mathcal{S}

TFAE:

• There is a causal effect X to Y

Causal Effect

Definition (total causal effect) Given a SEM \mathcal{S}

X has a causal effect on $Y \Leftrightarrow X \not\!\!\perp Y$ in $\mathbb{P}_{S}^{\mathbf{X}|do(X=\tilde{N}_{X})}$

TFAE:

- There is a causal effect X to Y
- There are *a*, *b* s.t. $\mathbb{P}_{S}^{Y|do(X=a)} \neq \mathbb{P}_{S}^{Y|do(X=b)}$
- There is an *a* s.t. $\mathbb{P}_{S}^{Y|do(X=a)} \neq \mathbb{P}_{S}^{Y}$
- $X \not\!\!\perp Y$ in $\mathbb{P}_{S}^{X,Y|do(X=\tilde{N}_{X})}$ for any \tilde{N}_{X} whose dist. has full support

Remark:

- If there is no directed path from X to Y, then there is no causal effect
- Sometimes there is a directed path, but no causal effect.

Given a DAG G and a joint distribution \mathbb{P}^{X} , this distribution is said to satisfy

• the global Markov property with respect to G if

A,B d-sep. by C \Rightarrow A $\perp\!\!\!\perp$ B | C \forall disjoint sets A,B,C

Given a DAG G and a joint distribution \mathbb{P}^{X} , this distribution is said to satisfy

- the global Markov property with respect to G if
 A,B d-sep. by C ⇒ A ⊥⊥ B | C ∀ disjoint sets A,B,C
- the local Markov property with respect to G if each variable is independent of its non-descendants given its parents

Given a DAG G and a joint distribution \mathbb{P}^{X} , this distribution is said to satisfy

- the global Markov property with respect to G if
 A,B d-sep. by C ⇒ A ⊥⊥ B | C ∀ disjoint sets A,B,C
- the local Markov property with respect to G if each variable is independent of its non-descendants given its parents
- the Markov factorization property with respect to G if

$$p(\mathbf{x}) = p(x_1, ..., x_p) = \prod_{j=1}^p p(x_j | x_{\mathbf{PA}_j^G})$$

Given a DAG G and a joint distribution \mathbb{P}^{X} , this distribution is said to satisfy

- the global Markov property with respect to G if
 A,B d-sep. by C ⇒ A ⊥⊥ B | C ∀ disjoint sets A,B,C
- the local Markov property with respect to G if each variable is independent of its non-descendants given its parents
- the Markov factorization property with respect to G if

$$p(\mathbf{x}) = p(x_1, ..., x_p) = \prod_{j=1}^{p} p(x_j | x_{\mathbf{PA}_j^G})$$

• IF \mathbb{P}^{X} has a densitiv p (w.r.t. a product measure), then all Markov properties above are **equivalent**!

Reichenbach's common cause principle can be proven using the previous Definitions and Theorem.

Proposition:

Assume that any pair of variables X and Y can be embedded into a larger system in the following sense: there exists a correct SEM over the collection **X** of random variables that contains X and Y with graph G. Then the Reichenbach's common cause principle follows from the Markov property in the following sense: If X and Y are dependent, then there is

- either a directed path from X to Y
- or from Y to X
- or there's a node T with a directed path from T to X and from T to Y.

Let the decision to study in Zurich (Z = 1) be determined only by whether one likes nature (N = 1) and whether one thinks ETH is a solid university (U = 1). How could the SEM look?

• $N = N_N$

- $N = N_N$
- $U = N_U$

- $N = N_N$
- $U = N_U$
- $Z = (N \vee U) \oplus N_Z$

- $N = N_N$
- $U = N_U$
- $Z = (N \vee U) \oplus N_Z$
- choose $N_N, N_U \sim^{iid}$ Ber(0.5) and $N_Z \sim^{iid}$ Ber(0.1)

From the SEM we can see that N and U are assumed to be independent. If you ask engineering students in Zurich (you condition on Z = 1, the answers to whether they like nature or think that ETH is a good university become anti-correlated: if someone is not a fan of nature, he probably likes ETH and vice versa. (Else he'd probably not have studied at ETH due to Ber(0.1)). So we have

 $N \not\perp U | (Z = 1).$

Truncated Factorization

Consider SEM \mathcal{S} with structural equations

$$X_j = f_j(X_{pa(j)}, N_j)$$

and density $p_{\mathcal{S}}$. We have

$$p_{\mathcal{S}}(x_1,\ldots,x_p) = \prod_{j=1}^p p_{\mathcal{S}}(x_j|x_{pa(j)})$$

Truncated Factorization

Construct \tilde{S} from S by $do(X_k = \tilde{N}_k)$

$$p_{\mathcal{S},do(X_k=\tilde{N}_k)}(x_1,...,x_p) = \prod_{j=1}^p p_{\mathcal{S},do(X_k=\tilde{N}_k)}(x_j|x_{pa(j)}) = \prod_{j\neq k} p_{\mathcal{S}}(x_j|x_{pa(j)})\tilde{p}(x_k)$$

Special Case:

$$p_{\mathcal{S},do(X_k=a)}(x_1,\ldots,x_p) = \begin{cases} \prod_{j\neq k} p_{\mathcal{S}}(x_j|x_{pa(j)}) & \text{if } x_k = a \\ 0 & \text{otherwise} \end{cases}$$

V. Bunkin, L. Steffen (Seminar in Statistics)

References

Jonas Peters (2015). Causality, lecture notes

V. Bunkin, L. Steffen (Seminar in Statistics)