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Agent-Environment Interface (in discrete time steps)

• State: St ∈ S

• Reward: Rt ∈ R

• Action: At ∈ A(St)

Policy

In each state, the agent can choose between di�erent actions. The probability that the agent
selects a possible action is called policy.

• πt(s|a): probability that At = a if St = s

Return

The return is the sum of the rewards.

• Uni�ed Notation of the return: Gt =
∑T

k=0 γ
kRt+k+1 where T is allowed to be ∞ and

0 < γ ≤ 1

The Markov Property

Decisions are assumed to be a function of the current state only.

• Pr{Rt+1 = r, St+1 = s′|S0, A0, R1, · · · , St−1, At−1, Rt, St, At} = Pr{Rt+1 = r, St+1 = s′|St, At}

The Markov Decision Processes

A task is a Markov Decision Process (MDP) if it satis�es the Markov Property.

• Given any state and action, s and a, the probability of each possible next state and reward,
s′, r, is:

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s,At = a}

• Given any current state and action, s and a, together with any next state, s′, the expected
value of next reward is:

r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′]

Value functions

Value functions estimate how good it is for the agent to be in a given state (state-value function)
or how good it is to perform a certain action in a given state (action-value function).

• State-value function: The value of a state s under a policy π is the expected return when
starting in s and following π thereafter:
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vπ(s) = Eπ[Gt|St = s] =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

• Action-value function: The value of the expected return taking action a in state s under
policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a]

Bellman optimality equation

• Bellman optimality equation for v∗:

v∗(s) = max
a∈A(s)

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

• Bellman optimality equation for q∗:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]

Policy Improvement Theorem

Let π and π′ be any pair of deterministic policies such that, for all s ∈ S,

qπ(s, π′(s)) ≥ vπ(s). (1)

Then the policy π′ must be as good as, or better than, π. That is, it must obtain greater or equal
expected return from all states s ∈ S:

vπ′(s) ≥ vπ(s). (2)

Moreover, if there is strict inequality of (1) at any state, then there must be strict inequality of
(2) at at least one state.

Value Iteration

Algorithm 1 Value iteration: Pseudocode

Initialize array V arbitrarily (e.g., V (s) = 0 for all s ∈ S+)

repeat

∆← 0
for each s ∈ S: do
v ← V (s)
V (s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)
∆← max(∆, |v − V (s)|)

end for

until ∆ < θ (a small positive number)

Output a deterministic policy, π, such that π(s) = argmaxa
∑

s′,r p(s
′, r|s, a)[r + γV (s′)]
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