
Reinforcement Learning and
Dynamic Programming

Talk 5

by Daniela and Christoph

Content

Reinforcement Learning Problem
• Agent-Environment Interface

• Markov Decision Processes

• Value Functions

• Bellman equations

Dynamic Programming
• Policy Evaluation, Improvement and Iteration

• Asynchronous DP

• Generalized Policy Iteration

Reinforcement Learning Problem

• Learning from interactions

• Achieving a goal

Example robot

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

actions

Reward is -1 for
all transition,
except for the last
transition.
Reward for the
last transition is 2.

Agent-Environment Interface

Agent
• Learner

• Decision maker

Environment
• Everything outside of the agent

Agent

Environment 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Interaction

• State: 𝑆𝑡 ∈ 𝑆

• Reward: 𝑅𝑡 ∈ ℝ

• Action: 𝐴𝑡 ∈ 𝐴(𝑆𝑡)

Discrete time steps
• 𝑡 = 0,1,2,3…

Agent

Environment

St Rt
At

1

-1 or 2

Example Robot

Agent

Environment

S0=1 0

1 2 3

4 5 6

Example Robot

Agent

Environment

-1

1 2 3

4 5 6
S1=2

Example Robot

Agent

Environment

-1

1 2 3

4 5 6
S2=5

Example Robot

Agent

Environment

-1

1 2 3

4 5 6
S3=5

Example Robot

Agent

Environment

2

1 2 3

4 5 6
S4=6

Policy

• In each state, the agent can choose between
different actions. The probability that the agent
selects a possible action is called policy.

• 𝜋𝑡 𝑎|𝑠 : probability that 𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠
• In reinforcement learning: the agent changes the

policy as a result of the experience

𝜋𝑡 𝑢𝑝|𝑠𝑖 = 0.25

𝜋𝑡 𝑙𝑒𝑓𝑡|𝑠𝑖 = 0.25

0.25

0.25

0.25 0.25

𝜋𝑡 𝑑𝑜𝑤𝑛|𝑠𝑖 = 0.25

𝜋𝑡 𝑟𝑖𝑔ℎ𝑡|𝑠𝑖 = 0.25

Example Robot: Diagram

2 1

6

3

4 5

1 2 3

4 5 6

0.25

0.25

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.25

0.5

Reward signal

• Goal: Maximizing the total amount of
cumulative reward over the long run

2 1

6

3

4 5

1 2 3

4 5 6

0.25

0.25

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.25

0.5

2

-1

-1

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

2

-1
-1

Return

Sum of the rewards
• 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯+ 𝑅𝑇, where T is a final step

Maximize the expected return

1 2 3

4 5 6 G0=-1-1+2=0

G0=-1-1-1-1+2=-2

t=0

Discounting

• If the task is a continuing task, a discount rate for the return is
needed

Discount rate determines the present value of
the future rewards in a continuing task
• 𝐺𝑡 = 𝑅𝑡+1 + 𝛾 ∗ 𝑅𝑡+2 + 𝛾

2 ∗ 𝑅𝑡+3 +⋯ = 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0

where 𝛾 is called the discount rate: 0 ≤ 𝛾 ≤ 1

Unified Notation: 𝑮𝒕 = 𝜸𝒌𝑹𝒕+𝒌+𝟏
𝑻
𝒌=𝟎

The Markov Property

• 𝑃𝑟 𝑅𝑡+1 = 𝑟, 𝑆𝑡+1= 𝑠
′|𝑆0, 𝐴0, 𝑅1, … , 𝑆𝑡−1, 𝐴𝑡−1 , 𝑅1, 𝑆𝑡 , 𝐴𝑡 =

𝑃𝑟 𝑅𝑡+1 = 𝑟, 𝑆𝑡+1= 𝑠
′|𝑆𝑡 , 𝐴𝑡

• State signal summarizes past sensations compactly such that
all relevant information is retained

• Decisions are assumed to be a function of the current state
only

1 2 3

4 5 6

7 8 9

The Markov Decision Processes

Task has to satisfy the Markov Property
• If the state and action spaces are finite, then it is called a

finite Markov decision process

• Given any state and action, s and a, the probability of each
possible next state and reward, s’, r, is: 𝑝(𝑠′, 𝑟|𝑠, 𝑎) =
𝑃𝑟 𝑆𝑡+1 = 𝑠

′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

Example robot

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃𝑟 𝑆𝑡+1 = 𝑠
′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

𝑝(2,−1|1, 𝑟𝑖𝑔ℎ𝑡) = 1

𝑝(4,−1|1, 𝑑𝑜𝑤𝑛) = 1

𝑝(4,−1|1, 𝑢𝑝) = 0
2 1

6

3

4 5
0.25

0.25

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.25

0.5

2

-1

-1

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

2

-1
-1

The Markov Decision Processes

• Given any current state and action, s and a, together with any
next state, s’, the expected value of next reward is:
𝑟(𝑠, 𝑎, 𝑠′) = 𝐸 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′

Example robot

𝑟 1, 𝑟𝑖𝑔ℎ𝑡, 2 = −1

𝑟(𝑠, 𝑎, 𝑠′) = 𝐸 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′

𝑟 1, 𝑑𝑜𝑤𝑛, 4 = −1 2 1

6

3

4 5
0.25

0.25

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5

0.25

0.5

2

-1

-1

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

2

-1
-1

𝑟 5, 𝑟𝑖𝑔ℎ𝑡, 6 = 2

Value functions

• Value functions estimate how good it is for the agent to be in
a given state (state-value function) or how good it is to
perform a certain action in a given state (action-value
function)

• Value functions are defined with respect to particular policies

• The value of a state s under a policy π is the expected return
when starting in s and following π thereafter: 𝑣𝜋 𝑠 =
 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠

• vπ is called the state-value function for policy π

State-value function

Property of state-value function

• Bellman equation for vπ

• Expresses a relationship between the value of a state and
the value of its successor states

𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = 𝜋(𝑎|𝑠)

𝑎

 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋 (𝑠
′)

𝑠′,𝑟

Example state-value function

𝑣𝜋 𝑠 = 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = 𝜋(𝑎|𝑠)

𝑎

 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋 (𝑠
′)

𝑠′,𝑟

𝑣𝜋 1 = 3 ∗ (0.25 ∗ 1 ∗ −1 + 𝑣𝜋 1) + 0.25 ∗ 1 ∗ (−1 + 𝑣𝜋 2)

1 2 3

3
1 2

0.25

0.25
0.25

0.75

0.5

-1

-1

-1

-1

2

𝛾 = 1

𝑣𝜋 2 = 2 ∗ (0.25 ∗ 1 ∗ −1 + 𝑣𝜋 2) + 0.25 ∗ 1 ∗ −1 + 𝑣𝜋 1 + 0.25 ∗ 1 ∗ (2 + 𝑣𝜋 3)

𝑣𝜋 3 = 0

𝒗𝝅 𝟏 = −𝟗 𝒗𝝅 𝟐 = −𝟓 𝒗𝝅 𝟑 = 𝟎

Action-value function

• The value of the expected return taking action a in state s
under policy π

• 𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• qπ is called the action-value function for policy π

Optimal policy

A policy π is better or equal to a policy π’ if the
state-value function is greater or equal to that of
π’
• 𝜋 ≥ 𝜋′𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑣𝜋(𝑠) ≥ 𝑣𝜋′ 𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆

Optimal state-value function
• 𝑣∗ 𝑠 = max

𝜋
𝑣𝜋 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆

Optimal action-value function
• 𝑞∗ 𝑠, 𝑎 = max

𝜋
𝑞𝜋 𝑠, 𝑎 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑎 ∈ 𝐴(𝑠)

Bellman optimality equation

• Without a reference to any specific policy

Bellman optimality equation for v*

• 𝑣∗ 𝑠 = max
𝑎∈𝐴(𝑠)
 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣∗ (𝑠

′)𝑠′,𝑟

Bellman optimality equation for v*

𝑣∗ 𝑠 = max
𝑎∈𝐴(𝑠)
 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣∗ (𝑠

′)

𝑠′,𝑟

𝑣∗ 1 = max

1 ∗ −1 + 𝑣∗ 1

1 ∗ −1 + 𝑣∗ 1

1 ∗ −1 + 𝑣∗ 1

1 ∗ (−1 + 𝑣∗ 2)

1 2 3 3
1 2

-1

-1

-1

-1

2

𝛾 = 1

𝑣∗ 2 = max

1 ∗ −1 + 𝑣∗ 2

1 ∗ −1 + 𝑣∗ 2

1 ∗ −1 + 𝑣∗ 1

1 ∗ 2 + 𝑣∗ 3

𝑣∗ 3 = 0

𝒗∗ 𝟏 =?

𝒗∗ 𝟐 =?

up
down
left
right

up
down
left
right

actions:

Bellman optimality equation

Bellman optimality equation for q*

• 𝑞∗ 𝑠, 𝑎 = 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾max
𝑎′
𝑞∗ (𝑠

′, 𝑎′)𝑠′,𝑟

Bellman optimality equation

• System of nonlinear equations, one for each state

• N states: there are N equations and N unknowns

• If we know 𝑝 𝑠′, 𝑟 𝑠, 𝑎 and 𝑟(𝑠, 𝑎, 𝑠′) then in principle one
can solve this system of equations

• If we have v*
 it is relatively easy to determine an optimal

policy

-9 -5 -3

-5 -3 -2

-3 -2 0

v*
π*

Assumptions for solving the Bellman
optimality equation

• Markov property

• We know the dynamics of the environment

• We have enough computational resources to complete the
computation of the solution

• Problem: Long computational time

• Solution: Dynamic programming

Dynamic Programming

Dynamic Programming

Collection of algorithms that can be used to compute
optimal policies given a perfect model of the
environment as a Markov decision process

Problem of classic DP algorithms: They are only of limited
utility in reinforcement learning:
• Assumption of perfect model
• Great computational expense

Key Idea of Dynamic Programming

Goal: Find optimal policy

Problem: Solve the Bellman optimality equation

𝑣∗ 𝑠 = max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠

′]

𝑠′,𝑟

Solution methods:
• Direct search
• Linear programming
• Dynamic programming

Key Idea of Dynamic Programming

Key idea of DP (and of reinforcement learning in general):

Use of value functions to organize and structure the
search for good policies

Dynamic programming approach:
 Introduce two concepts:

• Policy evaluation
• Policy improvement
Use those concepts to get an optimal policy

Assumptions

We always assume that the environment is a finite MDP, i.e:

• State, action and reward sets S, A(s) and R, for 𝑠 ∈S, are

finite
• Dynamics are given by a set of probabilities 𝑝(𝑠′, 𝑟|𝑠, 𝑎), for

all 𝑠 ∈S, 𝑎 ∈A(s), r ∈R , and 𝑠′ ∈ 𝑆+ (𝑆+ is S plus a
terminal state if the problem is episodic)

Policy Evaluation

How to compute state-value function 𝑣𝜋 for an arbitrary policy 𝜋:

Recall Bellman equation:

𝑣𝜋 𝑠 = 𝜋 𝑎 𝑠 𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝜋 𝑠

′]

𝑠′,𝑟𝑎

Existence and uniqueness of 𝑣𝜋 are guaranteed if:

• Either 𝛾 < 1 or

• Eventual termination is guaranteed from all states under policy 𝜋

Iterative Policy Evaluation

Consider iterative solution methods for Bellman equation:

Consider a sequence of approximate value functions 𝑣0, 𝑣1, 𝑣2, …,
each mapping 𝑆+ to ℝ .

Initial approximation, 𝑣0, is chosen arbitrarily (except that the
terminal states, if any, must be given value 0) .

Subsequently, use the Bellman equation for 𝑣𝜋 as an update rule:

𝑣𝑘+1 𝑠 = 𝜋 𝑎 𝑠 𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠

′]

𝑠′,𝑟𝑎

for all 𝑠 ∈S.

Iterative Policy Evaluation

𝑣𝑘+1 𝑠 = 𝜋 𝑎 𝑠 𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠

′]

𝑠′,𝑟𝑎

Convergence:

One can show that the sequence 𝑣𝑘 converges to 𝑣𝜋 as
𝑘 → ∞ under the same conditions that guarantee the existence
of 𝑣𝜋, i.e.

• Either 𝛾 < 1 or

• Eventual termination is guaranteed from all states under
policy 𝜋

Consider the robot example:

Goal: reach top left or bottom right corner

→(Nonterminal states are S = {2, 3, ..., 15})

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

actions

Reward is -1 for
all transition

Example: Iterative Policy Evaluation

Example: Iterative Policy Evaluation

Recall: can choose initial approximation arbitrarily (except for
terminal state)

→ choose 𝑣0 𝑠 = 0 for all states 𝑠 ∈ 𝑆+ = {1,2,… , 16}

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

𝑣0 for the
random policy:

Example: Iterative Policy Evaluation

Let’s calculate 𝑣1:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Example: Iterative Policy Evaluation
Let’s calculate 𝑣1: 𝑠 = 6

𝑣1 6 = 𝜋(𝑎|6) 𝑝 𝑠′, 𝑟 6, 𝑎 [𝑟 + 𝛾𝑣0 𝑠
′]

𝑠′,𝑟𝑎∈{𝑢,𝑑,𝑙,𝑟}

 = 0.25 ∗ −𝑝 2 6, 𝑢 − 𝑝 10 6, 𝑑 − 𝑝 5 6, 𝑙 − 𝑝 7 6, 𝑟

 = 0.25 ∗ {−1 − 1 − 1 − 1}

 = −1

= 0.25 ∀𝑎 = −1 = 0 ∀𝑠′

 𝑣1 6 = −1

Analogously for all non-terminal states 𝑠 ∈ 𝑆: 𝑣1 𝑠 = −1

= 𝜋(𝑎|6) 𝑝 𝑠′ 6, 𝑎 [𝑟 + 𝛾𝑣0 𝑠
′]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

Example: Iterative Policy Evaluation

Let’s calculate 𝑣1:

For the terminal states 1 and 16 the process terminates, i.e.
for 𝑠 ∈ {1, 16}:

𝑝 𝑠′ 𝑠, 𝑎 = 0 ∀𝑠′ ∈ 𝑆, 𝑎 ∈ {𝑢, 𝑑, 𝑙, 𝑟}

 𝑣1 for the random policy:

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

 𝑣𝑘 1 , 𝑣𝑘 16 = 0 ∀𝑘

Example: Iterative Policy Evaluation

Let’s calculate 𝑣2:

𝑠 = 6:

𝑣2 6 = 𝜋(𝑎|6) 𝑝 𝑠′ 6, 𝑎 [𝑟 + 𝛾𝑣1 𝑠
′]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

= 0.25 ∗ {𝑝 2 6, 𝑢 −1 − 𝛾 + 𝑝 10 6, 𝑑 −1 − 𝛾
+ 𝑝 5 6, 𝑙 −1 − 𝛾 + 𝑝 7 6, 𝑟 −1 − 𝛾 }

= 0.25 ∗ {−2 − 2 − 2 − 2}

= −2

= 0.25 ∀𝑎 = −1 =
−1, 𝑠′ ∈ 𝑆
0, 𝑠′ ∈ 𝑆+\𝑆

𝛾 = 1

 𝑣2 6 = −2

Example: Iterative Policy Evaluation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Analogously, we get for all red
colored states s

𝒗𝟐 𝒔 = −𝟐

Example: Iterative Policy Evaluation

Let’s calculate 𝑣2:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Example: Iterative Policy Evaluation

Let’s calculate 𝑣2:

𝑠 = 2:

𝑣2 2 = 𝜋(𝑎|2) 𝑝 𝑠′ 2, 𝑎 [𝑟 + 𝛾𝑣1 𝑠
′]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

= 0.25 ∗ {𝑝 2 2, 𝑢 −1 − 𝛾 + 𝑝 6 2, 𝑑 −1 − 𝛾

+ 𝑝 1 2, 𝑙 −1 − 𝛾 ∗ 0 + 𝑝 3 2, 𝑟 −1 − 𝛾 }

= 0.25 ∗ {−2 − 2 − 1 − 2}

= −1.75

= 0.25 ∀𝑎 = −1 =
−1, 𝑠′ ∈ 𝑆
0, 𝑠′ ∈ 𝑆+\𝑆

𝛾 = 1

 𝑣2 2 = −1.75

Example: Iterative Policy Evaluation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Analogously, we get for all blue
colored states s

𝒗𝟐 𝒔 = −𝟏. 𝟕𝟓

Example: Iterative Policy Evaluation

 𝑣2 for the random policy:

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7 0.0

Example: Iterative Policy Evaluation
𝑣𝑘 for the random policy:

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

𝑘 = 0

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

𝑘 = 1 𝑘 = 2

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4 0.0

𝑘 =3

0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1 0.0

⋯

𝑘 = 10

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

𝑘 = ∞

⋯ 𝑣𝜋

Policy Evaluation

Reason for computing value function 𝑣𝜋 for a policy 𝜋:

→ Finding better policies

→ Policy improvement

• Suppose we have determined the value function 𝑣𝜋 for an
arbitrary deterministic policy 𝜋

• Should we change the policy to deterministically choose an
action 𝑎 ≠ 𝜋(𝑠) for some state s?

• What we know: how good it is to follow the current policy
from s : 𝑣𝜋(𝑠)

• What we want to know: would it be better or worse to change
to the new policy?

Policy Improvement

Would it be better or worse to change to the new policy ?

(new policy: for some s choose action 𝑎 ≠ 𝜋(𝑠))

→ Consider selecting 𝑎 in s and thereafter following the existing
policy 𝜋: value of this way of behaving is:
𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= 𝑝 𝑠′, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 𝑠
′]

𝑠′,𝑟

→ If this is greater than 𝑣𝜋(𝑠), i.e., if it is better to select 𝑎 once in
s and thereafter follow 𝜋 than it would be to follow 𝜋 all the
time, then we would expect the new policy to be better than 𝜋

Policy Improvement

Policy Improvement Theorem

Let 𝜋 and 𝜋′ be any pair of deterministic policies such that, for all
𝑠 ∈ 𝑆,

𝑞𝜋 𝑠, 𝜋′(𝑠) ≥ 𝑣𝜋 𝑠 .

Then the policy 𝜋′ must be as good as, or better than, 𝜋. That is,
it must obtain greater or equal expected return from all states
𝑠 ∈ 𝑆:

𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠 .

Moreover, if there is strict inequality of (1) at any state then
there must be strict inequality of (2) at at least one state.

(1)

(2)

For situation before:

• Suppose we have a deterministic policy 𝜋, and a new policy 𝜋′
that equals 𝜋 except for one state 𝑠 for which 𝜋′ 𝑠 = 𝑎 ≠
𝜋(𝑠)

• Suppose 𝑞𝜋 𝑠, 𝑎 ≥ 𝑣𝜋 𝑠 , i.e. (1) is satisfied

𝑝𝑜𝑙𝑖𝑐𝑦
𝑖𝑚𝑝𝑟𝑜𝑣.
𝑡ℎ𝑚.

 𝜋′ is as good as, or better than, 𝜋

Policy Improvement

Claim: 𝑞𝜋 𝑠, 𝜋
′ 𝑠 ≥ 𝑣𝜋 𝑠 1

 𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠

Policy Improvement Theorem: Proof

Proof: 𝑣𝜋 𝑠 ≤ 𝑞𝜋 𝑠, 𝜋
′ 𝑠

 = 𝑬𝜋[𝑅𝑡+1 + 𝛾 𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋
′ 𝑠

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑣𝜋 𝑆𝑡+1 |𝑆𝑡 = 𝑠]

 ≤ 𝑬𝜋′[𝑅𝑡+1 + 𝛾𝑞𝜋 𝑆𝑡+1, 𝜋
′ 𝑆𝑡+1 |𝑆𝑡 = 𝑠]

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑬𝜋′[𝑅𝑡+2 + 𝛾𝑣𝜋 𝑆𝑡+2]|𝑆𝑡 = 𝑠]

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑣𝜋 𝑆𝑡+2 |𝑆𝑡 = 𝑠]

 ≤ 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 +𝛾
2𝑞𝜋 𝑆𝑡+2, 𝜋

′ 𝑆𝑡+2 |𝑆𝑡 = 𝑠]

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2+𝛾
2𝑬𝜋′[𝑅𝑡+3 + 𝛾𝑣𝜋 𝑆𝑡+3]|𝑆𝑡 = 𝑠]

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 + 𝛾

3𝑣𝜋(𝑆𝑡+3)|𝑆𝑡 = 𝑠]

 ⋮

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 + 𝛾

3𝑅𝑡+4 +⋯ 𝑆𝑡 = 𝑠

 = 𝑬𝜋′ [𝐺𝑡|𝑆𝑡 = 𝑠]

 = 𝑣𝜋′ 𝑠

(1)

(1)

(1)

= 𝐺𝑡

• What we have seen: Given a (deterministic) policy and its
value function we can easily evaluate a change in the policy at
a single state

• What if we allow changes at all states?

→For a given (deterministic) policy 𝜋 select at each state
𝑠 ∈ 𝑆 the action that appears best according to 𝑞𝜋 𝑠, 𝑎

→ i.e., consider the new greedy policy 𝜋′, given by
𝜋′ 𝑠 = argmax

𝑎
𝑞𝜋(𝑠, 𝑎)

→ take action that looks best in the short term – after one
step of lookahead – according to 𝑣𝜋

Policy Improvement

(3)

By construction, the greedy policy 𝜋′ fulfills the condition

𝑞𝜋 𝑠, 𝜋′(𝑠) ≥ 𝑣𝜋 𝑠

policy
impr.
theorem

 the policy 𝜋′ is as good as, or better than, the original
 policy

Policy Improvement

(1)

The process of making a new policy that improves on an original
policy, by making it greedy with respect to the value function of
the original policy, is called policy improvement.

Policy Improvement

Suppose the new greedy policy, 𝜋′, is as good as, but not better
than, the old policy 𝜋.

Then 𝑣𝜋 = 𝑣𝜋′ , and from

𝜋′ 𝑠 = argmax
𝑎
𝑞𝜋(𝑠, 𝑎)

it follows that for all 𝑠 ∈ 𝑆:

𝑣𝜋′ 𝑠 = max𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋′ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋′ 𝑠 .

𝑠′,𝑟

This is the Bellman optimality equation, and therefore, 𝑣𝜋′ must
be 𝑣∗, and both 𝜋 and 𝜋′ must be optimal policies.

Policy Improvement

(3)

• All the ideas of policy improvement can be extended to
stochastic policies.

(A stochastic policy 𝜋 specifies probabilities 𝜋(𝑎|𝑠) for taking
each action 𝑎 in each state 𝑠.)

• In particular, the policy improvement theorem holds also for
stochastic policies, under the natural definition:

𝑞𝜋 𝑠, 𝜋′(𝑠) = 𝜋
′ 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)𝑎 .

Policy Improvement

Example: Policy Improvement

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

random
policy 𝜋

value
function
𝑣𝜋

policy improvement

Example: Policy Improvement

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

random
policy 𝜋

value
function
𝑣𝜋

policy improvement

2

Example: Policy Improvement

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

random
policy 𝜋

value
function
𝑣𝜋

policy improvement

3

Example: Policy Improvement

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

random
policy 𝜋

value
function
𝑣𝜋

policy improvement

4

Example: Policy Improvement

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

random
policy 𝜋

value
function
𝑣𝜋

policy improvement

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′: Is 𝜋′ a better policy than the random policy 𝜋?

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

𝑣𝜋′ 2 = 𝜋′ 𝑎 2 𝑝 𝑠
′ 2, 𝑎 [−1 + 𝑣𝜋′ 𝑠

′]

𝑠′𝑎∈{𝑙}

 = 𝜋′ 𝑙 2 𝑝 𝑠′ 2, 𝑙 [−1 + 𝑣𝜋′ 𝑠

′]𝑠′
 = −1 + 𝑣𝜋′(1)
 = −1

=
0 𝑓𝑜𝑟 𝑠′ ∈ {2,3,… , 16}

1 𝑓𝑜𝑟 𝑠′ = 1

Is 𝜋′ a better policy than the random policy 𝜋?

Let’s calculate 𝑣𝜋′ :

= 1

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

𝑣𝜋′ 3 = 𝜋′ 𝑎 3 𝑝 𝑠
′ 3, 𝑎 [−1 + 𝑣𝜋′ 𝑠

′]

𝑠′𝑎∈{𝑙}

 = −1 + 𝑣𝜋′(2)
 = −1 − 1
 = −2

=
0 𝑓𝑜𝑟 𝑠′ ∈ {1,3,4… , 16}

1 𝑓𝑜𝑟 𝑠′ = 2

Is 𝜋′ a better policy than the random policy 𝜋?

Let’s calculate 𝑣𝜋′ :

= 1

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

𝑣𝜋′ 6 = 𝜋′ 𝑎 6 𝑝 𝑠′ 6, 𝑎 [−1 + 𝑣𝜋′ 𝑠
′]

𝑠′𝑎∈{𝑙,𝑢}

 = 0.5 ∗ {𝑝 5 6, 𝑙 ∗ [−1 + 𝑣𝜋′ 5]
 +𝑝 2 6, 𝑢 ∗ [−1 + 𝑣𝜋′ 2]}

 = 0.5 ∗ {−2 − 2}
 = −2

=
0 𝑓𝑜𝑟 𝑠′ ∈ 𝑆{2,5}

1 𝑓𝑜𝑟 𝑠′ ∈ {2,5}

Is 𝜋′ a better policy than the random policy 𝜋?

Let’s calculate 𝑣𝜋′ :

= 0.5

= −1

= −1

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

𝑣𝜋′ 4 = 𝜋′ 𝑎 4 𝑝 𝑠′ 4, 𝑎 [−1 + 𝑣𝜋′ 𝑠
′]

𝑠′𝑎∈{𝑙,𝑑}

 = 0.5 ∗ {𝑝 3 4, 𝑙 ∗ [−1 + 𝑣𝜋′ 3]
 +𝑝 8 4, 𝑑 ∗ [−1 + 𝑣𝜋′ 8]}

 = 0.5 ∗ {−3 − 3}
 = −3

Is 𝜋′ a better policy than the random policy 𝜋?

Let’s calculate 𝑣𝜋′ :

= 0.5 = −2

= −2

Example: Policy Improvement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

New policy 𝜋′:

0.0 -1.0 -2.0 -3.0

-1.0 -2.0 -3.0 -2.0

-2.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

Value function 𝑣𝜋′:

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

Value function 𝑣𝜋:

Since 𝑣𝜋 𝑠 ≤ −14 for all non-terminal states,
and 𝑣𝜋′ 𝑠 ≥ −3 for all non-terminal states

Clearly 𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠 ∀ 𝑠 ∈ 𝑆

 𝜋′ is better than 𝜋

Policy Iteration

Policy iteration is a way of finding an optimal policy:

Once a policy 𝜋 has been improved using 𝑣𝜋 to yield a better policy
𝜋′ we can then compute 𝑣𝜋′ and improve it again to yield an even
better policy 𝜋′′

Thus, we can obtain a sequence of monotonically improving policies
and value functions:

𝜋0
𝐸
→𝑣𝜋0

𝐼
→𝜋1

𝐸
→𝑣𝜋1

𝐼
→𝜋2

𝐸
→...

𝐼
→𝜋∗

𝐸
→𝑣∗

𝐸
→ denotes a policy evaluation and

𝐼
→ denotes a policy improvement

Policy Iteration

𝜋0
𝐸
→𝑣𝜋0

𝐼
→𝜋1

𝐸
→𝑣𝜋1

𝐼
→𝜋2

𝐸
→...

𝐼
→𝜋∗

𝐸
→𝑣∗

Because a finite MDP has only a finite number of policies, the
policy iteration has to converge to an optimal policy and optimal
value function in a finite number of iterations.

Policy iteration often converges in surprisingly few iterations:

Example: Policy Iteration

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Take the random
policy as 𝜋0

Policy iteration often converges in surprisingly few iterations:

Example: Policy Iteration

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

𝜋0

𝐸
→

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

𝐼
→

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

𝜋1 𝑣𝜋0

Each of its iterations involves policy evaluation, which itself is an
iterative process, that may require multiple sweeps through the
state set.

Policy Iteration: Drawback

Exact convergence to 𝑣𝜋 occurs only in the limit in iterative policy
evaluation.

Do we really need exact convergence?

→ No

Value iteration: stop policy evaluation after just one sweep of
the state set.

Policy Iteration: Drawback

Value iteration can be written as a simple backup operation that
combines the policy improvement and truncated policy
evaluation steps:

𝑣𝑘+1 𝑠 = max
𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 = max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣𝑘 𝑠

′]𝑠′,𝑟 ,

for all 𝑠 ∈ 𝑆.

The sequence {𝑣𝑘} converges to 𝑣∗ under the same assumptions
that guarantee the existence of 𝑣∗, i.e.

• Either 𝛾 < 1 or

• Eventual termination is guaranteed from all states under the
optimal policy

Value Iteration

(4)

Asynchronous Dynamic Programming

Major drawback of DP methods discussed so far:

→ Require sweeps over the whole state set

→ If state set is very large: single sweep already prohibitively
expensive

«Solution»: Asynchronous DP algorithms

Asynchronous DP algorithms:

• Are iterative DP algorithms that are not organized in terms of
systematic sweeps of the state set.

• Back up the values of states in any order whatsovever, using
whatever values of other states happen to be available.

• Must continue to back up the values of all the states to
converge correctly (can’t ignore any state after some point in
the computation).

Asynchronous Dynamic Programming

Version of asynchronous value iteration:

On each step k it only backs up the value of one state 𝑠𝑘, using
the value iteration backup:

𝑣𝑘+1 𝑠𝑘 = max
𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠𝑘 , 𝐴𝑡 = 𝑎]

If 0 ≤ 𝛾 < 1, convergence to 𝑣∗ is guaranteed given only that all
states occur in the sequence {𝑠𝑘} infinitely often.

Asynchronous Dynamic Programming

(4)

Asynchronous algorithms make it easier to intermix computation
with real-time interaction:

To solve a given MDP, we can run an iterative DP algorithm at the
same time that an agent is actually experiencing the MDP

→ Experience can be used to determine states to which DP
algorithm applies its backups

At the same time, the latest value and policy information from
the algorithm can guide the agent’s decision-making.

Asynchronous Dynamic Programming

Generalized Policy Iteration

Policy iteration consists of two interacting processes:

• Policy evaluation: making value function consistent with the
current policy

• Policy improvement: making the policy greedy w.r.t. the
current value function

Generalized policy iteration (GPI) refers to the general idea of
letting policy evaluation and policy improvement processes
interact, independent of the granularity and other details of the
two processes.

Generalized Policy Iteration

Interacting processes: Policy evaluation & policy improvement

• In policy iteration, theses two processes alternate, each
completing before the other begins.

• In value iteration, only one iteration of policy evaluation is
performed in between each policy improvement.

• In asynchronous DP methods, the evaluation and
improvement processes are interleaved at an even finer grain.

As long as both processes continue to update all states, the
ultimate result is typically the same: convergence to optimal
value function and an optimal policy.

Generalized Policy Iteration

Almost all reinforcement learning methods are well described as
GPI:

Generalized Policy Iteration

It is easy to see that if both the evaluation process and the
improvement process stabilize, then the value function and
policy must be optimal:

• Value function stabilizes only when it is consistent with
current policy

• Policy stabilices only when it is greedy w.r.t. the current value
function

→ Both processes stabilize only when a policy has been found
that is greedy w.r.t. its own value function

→ Bellman optimality equation holds

→ Policy and value funtion are optimal

Generalized Policy Iteration

Evaluation and improvement processes in GPI:
Both competing and cooperating

Generalized Policy Iteration

Pull in opposing directions Interact to find optimal solution

Efficiency of Dynamic Programming

A DP method is guaranteed to find an optimal policy in
polynomial time even though the total number of (deterministic)
policies is 𝑚𝑛
• 𝑛 = number of states

• 𝑚 = number of actions

→ DP is exponentially faster than any direct search in policy
space could be

• In practice, DP methods can be used with today’s computers
to solve MDPs with millions of states.

• Both policy and value iteration are widely used, and it is not
clear which, if either, is better in general.

• In practice, these methods usually converge much faster than
their theoretical worst-case run times.

• On problems with large state spaces, asynchronous DP
methods are often preferred.

Efficiency of Dynamic Programming

Tic Tac Toe with Dynamic
Programming

