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Reinforcement Learning Problem 

• Learning from interactions 

• Achieving a goal  



Example robot 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

actions 

Reward is -1 for 
all transition, 
except for the last 
transition.  
Reward for the 
last transition is 2. 



Agent-Environment Interface 

Agent 
• Learner 

• Decision maker 

 

Environment  
• Everything outside of the agent   

 

Agent 

Environment 1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 



Interaction 

• State: 𝑆𝑡 ∈ 𝑆 

 

• Reward: 𝑅𝑡 ∈ ℝ 

 

• Action: 𝐴𝑡 ∈ 𝐴(𝑆𝑡) 

 

 

Discrete time steps 
• 𝑡 = 0,1,2,3… 

 

Agent 

Environment 

St Rt 
At 

1 

-1 or 2 



Example Robot 

Agent 

Environment 

S0=1 0 

1 2 3 

4 5 6 



Example Robot 

Agent 

Environment 

-1 

1 2 3 

4 5 6 
S1=2 



Example Robot 

Agent 

Environment 

-1 

1 2 3 

4 5 6 
S2=5 



Example Robot 

Agent 

Environment 

-1 

1 2 3 

4 5 6 
S3=5 



Example Robot 

Agent 

Environment 

2 

1 2 3 

4 5 6 
S4=6 



Policy 

• In each state, the agent can choose between 
different actions. The probability that the agent 
selects a possible action is called policy.  

• 𝜋𝑡 𝑎|𝑠 : probability that 𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠 
• In reinforcement learning: the agent changes the 

policy as a result of the experience 

𝜋𝑡 𝑢𝑝|𝑠𝑖 = 0.25 

𝜋𝑡 𝑙𝑒𝑓𝑡|𝑠𝑖 = 0.25 

0.25 

0.25 

0.25 0.25 

𝜋𝑡 𝑑𝑜𝑤𝑛|𝑠𝑖 = 0.25 

𝜋𝑡 𝑟𝑖𝑔ℎ𝑡|𝑠𝑖 = 0.25 



Example Robot: Diagram 
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Reward signal 

• Goal: Maximizing the total amount of 
cumulative reward over the long run 
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Return 

Sum of the rewards 
• 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯+ 𝑅𝑇, where T is a final step 

 

Maximize the expected return 

 

 

 

1 2 3 

4 5 6 G0=-1-1+2=0 
 

G0=-1-1-1-1+2=-2 
 

t=0 
 



Discounting 

• If the task is a continuing task, a discount rate for the return is 
needed  

Discount rate determines the present value of 
the future rewards in a continuing task 
• 𝐺𝑡 = 𝑅𝑡+1 + 𝛾 ∗ 𝑅𝑡+2 + 𝛾

2 ∗ 𝑅𝑡+3 +⋯ =  𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0  

where 𝛾 is called the discount rate: 0 ≤ 𝛾 ≤ 1 

 

 

Unified Notation: 𝑮𝒕 =  𝜸𝒌𝑹𝒕+𝒌+𝟏
𝑻
𝒌=𝟎  



The Markov Property 

• 𝑃𝑟 𝑅𝑡+1 = 𝑟, 𝑆𝑡+1= 𝑠
′|𝑆0, 𝐴0, 𝑅1, … , 𝑆𝑡−1, 𝐴𝑡−1 , 𝑅1, 𝑆𝑡 , 𝐴𝑡 =

𝑃𝑟 𝑅𝑡+1 = 𝑟, 𝑆𝑡+1= 𝑠
′|𝑆𝑡 , 𝐴𝑡  

• State signal summarizes past sensations compactly such that 
all relevant information is retained  

• Decisions are assumed to be a function of the current state 
only 

 

1 2 3 

4 5 6 

7 8 9 



The Markov Decision Processes 

Task has to satisfy the Markov Property 
• If the state and action spaces are finite, then it is called a 

finite Markov decision process 

• Given any state and action, s and a, the probability of each 
possible next state and reward, s’, r, is:         𝑝(𝑠′, 𝑟|𝑠, 𝑎) =
𝑃𝑟 𝑆𝑡+1 = 𝑠

′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

 



Example robot 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃𝑟 𝑆𝑡+1 = 𝑠
′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

𝑝(2,−1|1, 𝑟𝑖𝑔ℎ𝑡) = 1 

𝑝(4,−1|1, 𝑑𝑜𝑤𝑛) = 1 

𝑝(4,−1|1, 𝑢𝑝) = 0 
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The Markov Decision Processes 

• Given any current state and action, s and a, together with any 
next state, s’, the expected value of next reward is: 
𝑟(𝑠, 𝑎, 𝑠′) = 𝐸 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′  



Example robot 

𝑟 1, 𝑟𝑖𝑔ℎ𝑡, 2 = −1 

𝑟(𝑠, 𝑎, 𝑠′) = 𝐸 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′  

𝑟 1, 𝑑𝑜𝑤𝑛, 4 = −1 2 1 
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𝑟 5, 𝑟𝑖𝑔ℎ𝑡, 6 = 2 



Value functions 

• Value functions estimate how good it is for the agent to be in 
a given state (state-value function) or how good it is to 
perform a certain action in a given state (action-value 
function) 

• Value functions are defined with respect to particular policies 

• The value of a state s under a policy π is the expected return 
when starting in s and following π thereafter:                𝑣𝜋 𝑠 =
 𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠  

 

• vπ is called the state-value function for policy π  

 

 

 



State-value function 



Property of state-value function 

 
• Bellman equation for vπ 

• Expresses a relationship between the value of a state and 
the value of its successor states 

 

𝑣𝜋 𝑠 =  𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = 𝜋(𝑎|𝑠)

𝑎

 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋 (𝑠
′)

𝑠′,𝑟

 



Example state-value function 

𝑣𝜋 𝑠 =  𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠 = 𝜋(𝑎|𝑠)

𝑎

 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣𝜋 (𝑠
′)

𝑠′,𝑟

 

𝑣𝜋 1 = 3 ∗ (0.25 ∗ 1 ∗ −1 + 𝑣𝜋 1 ) + 0.25 ∗ 1 ∗ (−1 + 𝑣𝜋 2 ) 

1 2 3 

3 
1 2 

0.25 

0.25 
0.25 

0.75 

0.5 

-1 

-1 

-1 

-1 

2 

𝛾 = 1 

𝑣𝜋 2 = 2 ∗ (0.25 ∗ 1 ∗ −1 + 𝑣𝜋 2 ) + 0.25 ∗ 1 ∗ −1 + 𝑣𝜋 1 + 0.25 ∗ 1 ∗ (2 + 𝑣𝜋 3 ) 

𝑣𝜋 3 = 0 

𝒗𝝅 𝟏 = −𝟗 𝒗𝝅 𝟐 = −𝟓 𝒗𝝅 𝟑 = 𝟎 



Action-value function 

• The value of the expected return taking action a in state s 
under policy π  

• 𝑞𝜋 𝑠, 𝑎 =  𝐸𝜋 𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

• qπ is called the action-value function for policy π 

 

 

 



Optimal policy 

A policy π is better or equal to a policy π’ if the 
state-value function is greater or equal to that of 
π’ 
• 𝜋 ≥ 𝜋′𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑣𝜋(𝑠) ≥ 𝑣𝜋′ 𝑠  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 

 

Optimal state-value function 
• 𝑣∗ 𝑠 = max

𝜋
𝑣𝜋 𝑠 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 

 

Optimal action-value function 
• 𝑞∗ 𝑠, 𝑎 = max

𝜋
𝑞𝜋 𝑠, 𝑎 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆  𝑎𝑛𝑑 𝑎 ∈ 𝐴(𝑠) 



Bellman optimality equation 

• Without a reference to any specific policy 

 

Bellman optimality equation for v* 

• 𝑣∗ 𝑠 = max
𝑎∈𝐴(𝑠)
 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣∗ (𝑠

′)𝑠′,𝑟   

 

 

 



Bellman optimality equation for v* 

𝑣∗ 𝑠 = max
𝑎∈𝐴(𝑠)
 𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾𝑣∗ (𝑠

′)

𝑠′,𝑟

  

𝑣∗ 1 = max

1 ∗ −1 + 𝑣∗ 1

1 ∗ −1 + 𝑣∗ 1

1 ∗ −1 + 𝑣∗ 1

1 ∗ (−1 + 𝑣∗ 2 )

 

1 2 3 3 
1 2 

-1 

-1 

-1 

-1 

2 

𝛾 = 1 

𝑣∗ 2 = max

1 ∗ −1 + 𝑣∗ 2

1 ∗ −1 + 𝑣∗ 2

1 ∗ −1 + 𝑣∗ 1

1 ∗ 2 + 𝑣∗ 3

 

𝑣∗ 3 = 0 

𝒗∗ 𝟏 =? 

𝒗∗ 𝟐 =? 

up 
down 
left 
right 

up 
down 
left 
right 

actions: 



Bellman optimality equation 

Bellman optimality equation for q* 

• 𝑞∗ 𝑠, 𝑎 =  𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 + 𝛾max
𝑎′
𝑞∗ (𝑠

′, 𝑎′)𝑠′,𝑟  

 

 

 

 



Bellman optimality equation 

• System of nonlinear equations, one for each state 

• N states: there are N equations and N unknowns 

• If we know 𝑝 𝑠′, 𝑟 𝑠, 𝑎  and 𝑟(𝑠, 𝑎, 𝑠′) then in principle one 
can solve this system of equations 

• If we have v*
 it is relatively easy to determine an optimal 

policy 

 
-9 -5 -3 

-5 -3 -2 

-3 -2 0 

v* 
π* 



Assumptions for solving the Bellman 
optimality equation  

• Markov property 

• We know the dynamics of the environment 

• We have enough computational resources to complete the 
computation of the solution 

• Problem: Long computational time 

• Solution: Dynamic programming 

 

 



Dynamic Programming 



Dynamic Programming 

Collection of algorithms that can be used to compute 
optimal policies given a perfect model of the 
environment as a Markov decision process 

Problem of classic DP algorithms: They are only of limited  
utility in reinforcement learning: 
• Assumption of perfect model 
• Great computational expense 



Key Idea of Dynamic Programming 

Goal: Find optimal policy 

Problem: Solve the Bellman optimality equation 

𝑣∗ 𝑠 = max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 + 𝛾𝑣∗ 𝑠

′ ]

𝑠′,𝑟

 

Solution methods:  
• Direct search 
• Linear programming 
• Dynamic programming 



Key Idea of Dynamic Programming 

Key idea of DP (and of reinforcement learning in general): 

Use of value functions to organize and structure the 
search for good policies 

Dynamic programming approach:  
 Introduce two concepts: 

• Policy evaluation 
• Policy improvement 
Use those concepts to  get an optimal policy 



Assumptions 

We always assume that the environment is a finite MDP, i.e: 
 
• State, action and reward sets S, A(s) and R, for 𝑠 ∈S, are 

finite 
• Dynamics are given by a set of probabilities 𝑝(𝑠′, 𝑟|𝑠, 𝑎), for 

all 𝑠 ∈S, 𝑎 ∈A(s), r ∈R , and 𝑠′ ∈ 𝑆+ (𝑆+ is S plus a 
terminal state if the problem is episodic) 

   



Policy Evaluation 

How to compute state-value function 𝑣𝜋 for an arbitrary policy 𝜋: 

 

Recall Bellman equation: 

𝑣𝜋 𝑠 =   𝜋 𝑎 𝑠  𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 +  𝛾𝑣𝜋 𝑠

′ ]

𝑠′,𝑟𝑎

 

 

Existence and uniqueness of 𝑣𝜋 are guaranteed if: 

• Either 𝛾 < 1 or 

• Eventual termination is guaranteed from all states under policy 𝜋 



Iterative Policy Evaluation 

Consider iterative solution methods for Bellman equation: 
 

Consider a sequence of approximate value functions 𝑣0, 𝑣1, 𝑣2, …, 
each mapping 𝑆+ to ℝ . 
 

Initial approximation, 𝑣0, is chosen arbitrarily (except that the 
terminal states, if any, must be given value 0) . 
 

Subsequently, use  the Bellman equation for 𝑣𝜋 as an update rule: 

𝑣𝑘+1 𝑠 =   𝜋 𝑎 𝑠  𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 +  𝛾𝑣𝑘 𝑠

′ ]

𝑠′,𝑟𝑎

 

for all 𝑠 ∈S. 
 

 

 

 



Iterative Policy Evaluation 

𝑣𝑘+1 𝑠 =   𝜋 𝑎 𝑠  𝑝 𝑠
′, 𝑟 𝑠, 𝑎 [𝑟 +  𝛾𝑣𝑘 𝑠

′ ]

𝑠′,𝑟𝑎

 

 

Convergence: 
 

One can show that the sequence 𝑣𝑘  converges to 𝑣𝜋 as 
𝑘 →  ∞ under the same conditions that guarantee the existence 
of 𝑣𝜋, i.e. 
 

• Either 𝛾 < 1 or 

• Eventual termination is guaranteed from all states under 
policy 𝜋 

 



Consider the robot example: 

Goal: reach top left or bottom right corner 

→( Nonterminal states are S = {2, 3, ..., 15}) 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

actions 

Reward is -1 for 
all transition 

Example: Iterative Policy Evaluation 



Example: Iterative Policy Evaluation 

Recall: can choose initial approximation arbitrarily (except for 
terminal state) 

→ choose 𝑣0 𝑠 = 0 for all states 𝑠 ∈ 𝑆+ = {1,2,… , 16} 
 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

𝑣0 for the 
random policy: 



Example: Iterative Policy Evaluation 

Let’s calculate 𝑣1: 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 



Example: Iterative Policy Evaluation 
Let’s calculate 𝑣1: 𝑠 = 6 

𝑣1 6 =   𝜋(𝑎|6) 𝑝 𝑠′, 𝑟 6, 𝑎 [𝑟 + 𝛾𝑣0 𝑠
′ ]

𝑠′,𝑟𝑎∈{𝑢,𝑑,𝑙,𝑟}

 

 
 
 

 = 0.25 ∗ −𝑝 2 6, 𝑢 − 𝑝 10 6, 𝑑 − 𝑝 5 6, 𝑙 − 𝑝 7 6, 𝑟  

 = 0.25 ∗ {−1 − 1 − 1 − 1} 

 = −1 

  

= 0.25 ∀𝑎 = −1 = 0 ∀𝑠′ 

 𝑣1 6 = −1 

Analogously for all non-terminal states 𝑠 ∈ 𝑆: 𝑣1 𝑠 = −1 
 

=  𝜋(𝑎|6) 𝑝 𝑠′ 6, 𝑎 [𝑟 + 𝛾𝑣0 𝑠
′ ]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

 

 



Example: Iterative Policy Evaluation 

Let’s calculate 𝑣1: 

For the terminal states 1 and 16 the process terminates, i.e.  
for 𝑠 ∈ {1, 16}: 
 

𝑝 𝑠′ 𝑠, 𝑎 = 0 ∀𝑠′ ∈ 𝑆, 𝑎 ∈ {𝑢, 𝑑, 𝑙, 𝑟} 

 

 

 𝑣1 for the random policy: 

0.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 0.0 

 𝑣𝑘 1 , 𝑣𝑘 16 = 0  ∀𝑘 



Example: Iterative Policy Evaluation 

Let’s calculate 𝑣2: 

𝑠 = 6: 

𝑣2 6 =   𝜋(𝑎|6) 𝑝 𝑠′ 6, 𝑎 [𝑟 + 𝛾𝑣1 𝑠
′ ]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

 

 
 

= 0.25 ∗ {𝑝 2 6, 𝑢 −1 − 𝛾 + 𝑝 10 6, 𝑑 −1 − 𝛾
+ 𝑝 5 6, 𝑙 −1 − 𝛾 + 𝑝 7 6, 𝑟 −1 − 𝛾 } 

 

= 0.25 ∗ {−2 − 2 − 2 − 2} 
 

= −2 
  

= 0.25 ∀𝑎 = −1 =  
−1, 𝑠′ ∈ 𝑆        
0, 𝑠′ ∈ 𝑆+\𝑆

 

𝛾 = 1 

 𝑣2 6 = −2 



Example: Iterative Policy Evaluation 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

Analogously, we get for all red 
colored states s 
 

𝒗𝟐 𝒔 = −𝟐 



Example: Iterative Policy Evaluation 

Let’s calculate 𝑣2: 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 



Example: Iterative Policy Evaluation 

Let’s calculate 𝑣2: 

𝑠 = 2: 

𝑣2 2 =   𝜋(𝑎|2) 𝑝 𝑠′ 2, 𝑎 [𝑟 + 𝛾𝑣1 𝑠
′ ]

𝑠′𝑎∈{𝑢,𝑑,𝑙,𝑟}

 

 
 
= 0.25 ∗ {𝑝 2 2, 𝑢 −1 − 𝛾 + 𝑝 6 2, 𝑑 −1 − 𝛾

+ 𝑝 1 2, 𝑙 −1 − 𝛾 ∗ 0 + 𝑝 3 2, 𝑟 −1 − 𝛾 } 
 

= 0.25 ∗ {−2 − 2 − 1 − 2} 
 

= −1.75 
  

= 0.25 ∀𝑎 = −1 =  
−1, 𝑠′ ∈ 𝑆        
0, 𝑠′ ∈ 𝑆+\𝑆

 

𝛾 = 1 

 𝑣2 2 = −1.75 



Example: Iterative Policy Evaluation 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

Analogously, we get for all blue 
colored states s 
 

𝒗𝟐 𝒔 = −𝟏. 𝟕𝟓 



Example: Iterative Policy Evaluation 

 𝑣2 for the random policy: 

0.0 -1.7 -2.0 -2.0 

-1.7 -2.0 -2.0 -2.0 

-2.0 -2.0 -2.0 -1.7 

-2.0 -2.0 -1.7 0.0 



Example: Iterative Policy Evaluation 
𝑣𝑘 for the random policy: 

0.0 -1.7 -2.0 -2.0 

-1.7 -2.0 -2.0 -2.0 

-2.0 -2.0 -2.0 -1.7 

-2.0 -2.0 -1.7 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 

𝑘 = 0 

0.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 -1.0 

-1.0 -1.0 -1.0 0.0 

𝑘 = 1 𝑘 = 2 

0.0 -2.4 -2.9 -3.0 

-2.4 -2.9 -3.0 -2.9 

-2.9 -3.0 -2.9 -2.4 

-3.0 -2.9 -2.4 0.0 

𝑘 =3 

0.0 -6.1 -8.4 -9.0 

-6.1 -7.7 -8.4 -8.4 

-8.4 -8.4 -7.7 -6.1 

-9.0 -8.4 -6.1 0.0 

⋯ 

𝑘 = 10 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

𝑘 = ∞ 

⋯ 𝑣𝜋 



Policy Evaluation 

 

Reason for computing value function 𝑣𝜋 for a policy 𝜋: 

→ Finding better policies 

 

 

→ Policy improvement 



• Suppose we have determined the value function 𝑣𝜋 for an 
arbitrary deterministic policy 𝜋  

• Should we change the policy to deterministically choose an 
action 𝑎 ≠  𝜋(𝑠) for some state s? 

• What we know: how good it is to follow the current policy 
from s : 𝑣𝜋(𝑠) 

• What we want to know: would it be better or worse to change 
to the new policy? 

Policy Improvement 



Would it be better or worse to change to the new policy ? 

(new policy: for some s choose action 𝑎 ≠  𝜋(𝑠)) 

 

→ Consider selecting 𝑎 in s  and thereafter following the existing 
policy 𝜋: value of this way of behaving is: 
𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋  𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1   𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

=   𝑝 𝑠′, 𝑟 𝑠, 𝑎) [𝑟 +  𝛾𝑣𝜋 𝑠
′ ]

𝑠′,𝑟

 

 

→ If this is greater than 𝑣𝜋(𝑠), i.e., if it is better to select 𝑎 once in 
s and thereafter follow 𝜋 than it would be to follow 𝜋 all the 
time, then we would expect the new policy to be better than 𝜋 

 

Policy Improvement 



Policy Improvement Theorem 

Let 𝜋 and 𝜋′ be any pair of deterministic policies such that, for all 
𝑠 ∈ 𝑆, 

𝑞𝜋 𝑠, 𝜋′(𝑠) ≥  𝑣𝜋 𝑠 . 

Then the policy 𝜋′ must be as good as, or better than, 𝜋. That is, 
it must obtain greater or equal expected return from all states 
𝑠 ∈ 𝑆: 

𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠 . 

Moreover, if there is strict inequality of (1) at any state then 
there must be strict inequality of (2) at at least one state. 

 

(1) 

(2) 



For situation before: 

• Suppose we have a deterministic policy 𝜋, and a new policy 𝜋′ 
that equals 𝜋 except for one state 𝑠  for which 𝜋′ 𝑠 = 𝑎 ≠
𝜋(𝑠) 

• Suppose 𝑞𝜋 𝑠, 𝑎 ≥ 𝑣𝜋 𝑠 , i.e. (1) is satisfied 

 
𝑝𝑜𝑙𝑖𝑐𝑦
𝑖𝑚𝑝𝑟𝑜𝑣.
𝑡ℎ𝑚.

 𝜋′ is as good as, or better than, 𝜋 

Policy Improvement 



Claim: 𝑞𝜋 𝑠, 𝜋
′ 𝑠 ≥ 𝑣𝜋 𝑠                1   

 𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠  

Policy Improvement Theorem: Proof 



Proof:  𝑣𝜋 𝑠  ≤ 𝑞𝜋 𝑠, 𝜋
′ 𝑠  

 = 𝑬𝜋[𝑅𝑡+1 + 𝛾 𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋
′ 𝑠  

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑣𝜋 𝑆𝑡+1 |𝑆𝑡 = 𝑠]  

 ≤ 𝑬𝜋′[𝑅𝑡+1 + 𝛾𝑞𝜋 𝑆𝑡+1, 𝜋
′ 𝑆𝑡+1 |𝑆𝑡 = 𝑠] 

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑬𝜋′[𝑅𝑡+2 + 𝛾𝑣𝜋 𝑆𝑡+2 ]|𝑆𝑡 = 𝑠] 

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑣𝜋 𝑆𝑡+2 |𝑆𝑡 = 𝑠] 

 ≤ 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 +𝛾
2𝑞𝜋 𝑆𝑡+2, 𝜋

′ 𝑆𝑡+2 |𝑆𝑡 = 𝑠] 

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2+𝛾
2𝑬𝜋′[𝑅𝑡+3 + 𝛾𝑣𝜋 𝑆𝑡+3 ]|𝑆𝑡 = 𝑠] 

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 + 𝛾

3𝑣𝜋(𝑆𝑡+3)|𝑆𝑡 = 𝑠] 

 ⋮ 

 = 𝑬𝜋′[𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 + 𝛾

3𝑅𝑡+4 +⋯ 𝑆𝑡 = 𝑠  

 = 𝑬𝜋′ [𝐺𝑡|𝑆𝑡 = 𝑠] 

 = 𝑣𝜋′ 𝑠  

 

 

 

 

 

 

 

 

 

(1) 

(1) 

(1) 

= 𝐺𝑡 



• What we have seen: Given a (deterministic) policy and its 
value function we can easily evaluate a change in the policy at 
a single state 

• What if we allow changes at all states? 

→For a given (deterministic) policy 𝜋 select at each state 
𝑠 ∈ 𝑆 the action that appears best according to 𝑞𝜋 𝑠, 𝑎  

→ i.e., consider the new greedy policy 𝜋′, given by 
𝜋′ 𝑠 =  argmax

𝑎
𝑞𝜋(𝑠, 𝑎) 

→ take action that looks best in the short term – after one 
step of lookahead – according to 𝑣𝜋 

Policy Improvement 

 

(3) 



By construction, the greedy policy 𝜋′ fulfills the condition  

 
𝑞𝜋 𝑠, 𝜋′(𝑠) ≥  𝑣𝜋 𝑠  

policy
impr.
theorem

  the policy 𝜋′ is as good as, or better than, the original 
 policy 

Policy Improvement 

(1) 



The process of making a new policy that improves on an original 
policy, by making it greedy with respect to the value function of 
the original policy, is called policy improvement. 

Policy Improvement 



Suppose the new greedy policy, 𝜋′, is as good as, but not better 
than, the old policy 𝜋.  

Then 𝑣𝜋 = 𝑣𝜋′ , and from 
 

𝜋′ 𝑠 =  argmax
𝑎
𝑞𝜋(𝑠, 𝑎) 

it follows that for all 𝑠 ∈ 𝑆: 
 

𝑣𝜋′ 𝑠 =  max𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝜋′ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

= max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋′ 𝑠 . 

𝑠′,𝑟

 

 

This is the Bellman optimality equation, and therefore, 𝑣𝜋′  must 
be 𝑣∗, and both 𝜋 and 𝜋′ must be optimal policies. 

Policy Improvement 

(3) 



• All the ideas of policy improvement can be extended to 
stochastic policies. 

(A stochastic policy 𝜋 specifies probabilities 𝜋(𝑎|𝑠) for taking 
each action 𝑎 in each state 𝑠.) 

 

• In particular, the policy improvement theorem holds also for 
stochastic policies, under the natural definition: 

𝑞𝜋 𝑠, 𝜋′(𝑠) =   𝜋
′ 𝑎 𝑠 𝑞𝜋(𝑠, 𝑎)𝑎 . 

 

 

Policy Improvement 



Example: Policy Improvement 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

random 
policy 𝜋 

value 
function 
𝑣𝜋 

policy improvement 



Example: Policy Improvement 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

random 
policy 𝜋 

value 
function 
𝑣𝜋 

policy improvement 
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Example: Policy Improvement 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

random 
policy 𝜋 

value 
function 
𝑣𝜋 

policy improvement 
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Example: Policy Improvement 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

random 
policy 𝜋 

value 
function 
𝑣𝜋 

policy improvement 
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Example: Policy Improvement 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

random 
policy 𝜋 

value 
function 
𝑣𝜋 

policy improvement 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: Is 𝜋′ a better policy than the random policy 𝜋? 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 

𝑣𝜋′ 2 =   𝜋′ 𝑎 2  𝑝 𝑠
′ 2, 𝑎 [−1 + 𝑣𝜋′ 𝑠

′ ]

𝑠′𝑎∈{𝑙}

 

 
 
 = 𝜋′ 𝑙 2  𝑝 𝑠′ 2, 𝑙 [−1 + 𝑣𝜋′ 𝑠

′ ]𝑠′  
 = −1 + 𝑣𝜋′(1) 
 = −1 

=  
0 𝑓𝑜𝑟 𝑠′ ∈ {2,3,… , 16}

1 𝑓𝑜𝑟 𝑠′ = 1                  
  

Is 𝜋′ a better policy than the random policy 𝜋? 

Let’s calculate 𝑣𝜋′ : 

= 1 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 

𝑣𝜋′ 3 =   𝜋′ 𝑎 3  𝑝 𝑠
′ 3, 𝑎 [−1 + 𝑣𝜋′ 𝑠

′ ]

𝑠′𝑎∈{𝑙}

 

 
 
 = −1 + 𝑣𝜋′(2) 
 = −1 − 1 
 = −2 

=  
0 𝑓𝑜𝑟 𝑠′ ∈ {1,3,4… , 16}

1 𝑓𝑜𝑟 𝑠′ = 2                    
  

Is 𝜋′ a better policy than the random policy 𝜋? 

Let’s calculate 𝑣𝜋′ : 

= 1 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 

𝑣𝜋′ 6 =   𝜋′ 𝑎 6  𝑝 𝑠′ 6, 𝑎 [−1 + 𝑣𝜋′ 𝑠
′ ]

𝑠′𝑎∈{𝑙,𝑢}

 

 
 
  
 = 0.5 ∗ {𝑝 5 6, 𝑙 ∗ [−1 + 𝑣𝜋′ 5 ] 
             +𝑝 2 6, 𝑢 ∗ [−1 + 𝑣𝜋′ 2 ]} 
 
  = 0.5 ∗ {−2 − 2} 
  = −2 

=  
0 𝑓𝑜𝑟 𝑠′ ∈ 𝑆{2,5}

1 𝑓𝑜𝑟 𝑠′ ∈ {2,5}  
  

Is 𝜋′ a better policy than the random policy 𝜋? 

Let’s calculate 𝑣𝜋′ : 

= 0.5 

= −1 

= −1 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 

𝑣𝜋′ 4 =   𝜋′ 𝑎 4  𝑝 𝑠′ 4, 𝑎 [−1 + 𝑣𝜋′ 𝑠
′ ]

𝑠′𝑎∈{𝑙,𝑑}

 

 
 = 0.5 ∗ {𝑝 3 4, 𝑙 ∗ [−1 + 𝑣𝜋′ 3 ] 
   +𝑝 8 4, 𝑑 ∗ [−1 + 𝑣𝜋′ 8 ]} 
  
 = 0.5 ∗ {−3 − 3} 
 = −3 

Is 𝜋′ a better policy than the random policy 𝜋? 

Let’s calculate 𝑣𝜋′ : 

= 0.5 = −2 

= −2 



Example: Policy Improvement 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

New policy 𝜋′: 

0.0 -1.0 -2.0 -3.0 

-1.0 -2.0 -3.0 -2.0 

-2.0 -3.0 -2.0 -1.0 

-3.0 -2.0 -1.0 0.0 

Value function 𝑣𝜋′: 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

Value function 𝑣𝜋: 

Since 𝑣𝜋 𝑠 ≤ −14 for all non-terminal states,  
and 𝑣𝜋′ 𝑠 ≥ −3 for all non-terminal states 

Clearly  𝑣𝜋′ 𝑠 ≥ 𝑣𝜋 𝑠     ∀ 𝑠 ∈ 𝑆   

  𝜋′ is better than 𝜋 



Policy Iteration 

Policy iteration is a way of finding an optimal policy: 
 

Once a policy 𝜋 has been improved using 𝑣𝜋 to yield a better policy 
𝜋′ we can then compute 𝑣𝜋′ and improve it again to yield an even 
better policy 𝜋′′ 
 

Thus, we can obtain a sequence of monotonically improving policies 
and value functions: 

𝜋0
𝐸
→𝑣𝜋0

𝐼
→𝜋1

𝐸
→𝑣𝜋1

𝐼
→𝜋2

𝐸
→... 

𝐼
→𝜋∗

𝐸
→𝑣∗ 

 

𝐸
→ denotes a policy evaluation and 

 
𝐼
→ denotes a policy improvement 

 

 

 

 

 



Policy Iteration 

𝜋0
𝐸
→𝑣𝜋0

𝐼
→𝜋1

𝐸
→𝑣𝜋1

𝐼
→𝜋2

𝐸
→... 

𝐼
→𝜋∗

𝐸
→𝑣∗ 

 

Because a finite MDP has only a finite number of policies, the 
policy iteration has to converge to an optimal policy and optimal 
value function in a finite number of iterations. 

 



Policy iteration often converges in surprisingly few iterations: 

Example: Policy Iteration 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

Take the random 
policy as 𝜋0 



Policy iteration often converges in surprisingly few iterations: 

Example: Policy Iteration 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

𝜋0 

𝐸
→ 

0.0 -14. -20. -22. 

-14. -18. -20. -20. 

-20. -20. -18. -14. 

-22. -20. -14. 0.0 

𝐼
→ 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

𝜋1 𝑣𝜋0  



Each of its iterations involves policy evaluation, which itself is an 
iterative process, that may require multiple sweeps through the 
state set. 

 

Policy Iteration: Drawback 



Exact convergence to 𝑣𝜋 occurs only in the limit in iterative policy 
evaluation.  

Do we really need exact convergence? 

→ No 

 

Value iteration: stop policy evaluation after just one sweep of 
the state set. 

Policy Iteration: Drawback 



Value iteration can be written as a simple backup operation that 
combines the policy improvement and truncated policy 
evaluation steps: 

𝑣𝑘+1 𝑠 =  max
𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

       = max
𝑎
 𝑝 𝑠′, 𝑟 𝑠, 𝑎 [𝑟 +  𝛾𝑣𝑘 𝑠

′ ]𝑠′,𝑟 , 

for all 𝑠 ∈ 𝑆. 
 

The sequence {𝑣𝑘} converges to 𝑣∗ under the same assumptions 
that guarantee the existence of 𝑣∗, i.e. 

• Either 𝛾 < 1 or 

• Eventual termination is guaranteed from all states under the 
optimal policy 

 

Value Iteration 

(4) 
 



Asynchronous Dynamic Programming 

Major drawback of DP methods discussed so far: 

→ Require sweeps over the whole state set 

→ If state set is very large: single sweep already prohibitively 
expensive 

 

«Solution»: Asynchronous DP algorithms 

 

 



Asynchronous DP algorithms: 

• Are iterative DP algorithms that are not organized in terms of 
systematic sweeps of the state set. 

• Back up the values of states in any order whatsovever, using 
whatever values of other states happen to be available. 

• Must continue to back up the values of all the states to 
converge correctly (can’t ignore any state after some point in 
the computation). 

Asynchronous Dynamic Programming 



Version of asynchronous value iteration: 

On each step k it  only backs up the value of one state 𝑠𝑘, using 
the value iteration backup: 

𝑣𝑘+1 𝑠𝑘 = max
𝑎
𝐸 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠𝑘 , 𝐴𝑡 = 𝑎] 

 

If 0 ≤ 𝛾 < 1, convergence to 𝑣∗ is guaranteed given only that all 
states occur in the sequence {𝑠𝑘} infinitely often. 

 

Asynchronous Dynamic Programming 

 

(4) 



Asynchronous algorithms make it easier to intermix computation 
with real-time interaction: 

To solve a given MDP, we can run an iterative DP algorithm at the 
same time that an agent is actually experiencing the MDP 

→ Experience can be used to determine states to which DP 
algorithm applies its backups 

At the same time, the latest value and policy information from 
the algorithm can guide the agent’s decision-making. 

Asynchronous Dynamic Programming 



Generalized Policy Iteration 

Policy iteration consists of two interacting processes: 

• Policy evaluation: making value function consistent with the 
current policy 

• Policy improvement: making the policy greedy w.r.t. the 
current value function 



Generalized policy iteration (GPI) refers to the general idea of 
letting policy evaluation and policy improvement processes 
interact, independent of the granularity and other details of the 
two processes. 

 

 

Generalized Policy Iteration 



Interacting processes: Policy evaluation & policy improvement 

• In policy iteration, theses two processes alternate, each 
completing before the other begins. 

• In value iteration, only one iteration of policy evaluation is 
performed in between each policy improvement. 

• In asynchronous DP methods, the evaluation and 
improvement processes are interleaved at an even finer grain. 

As long as both processes continue to update all states, the 
ultimate result is typically the same: convergence to optimal 
value function and an optimal policy. 

 

Generalized Policy Iteration 



Almost all reinforcement learning methods are well described as 
GPI: 

Generalized Policy Iteration 



It is easy to see that if both the evaluation process and the 
improvement process stabilize, then the value function and 
policy must be optimal: 

• Value function stabilizes only when it is consistent with 
current policy 

• Policy stabilices only when it is greedy w.r.t. the current value 
function 

→ Both processes stabilize only when a policy has been found 
that is greedy w.r.t. its own value function 

→ Bellman optimality equation holds 

→ Policy and value funtion are optimal 

Generalized Policy Iteration 



Evaluation and improvement processes in GPI:  
Both competing and cooperating 

 

Generalized Policy Iteration 

Pull in opposing directions Interact to find optimal solution 



Efficiency of Dynamic Programming 

A DP method is guaranteed to find an optimal policy in 
polynomial time even though the total number of (deterministic) 
policies is 𝑚𝑛 
• 𝑛 = number of states 

• 𝑚 = number of actions 

 

→ DP is exponentially faster than any direct search in policy 
space could be 

 



• In practice, DP methods can be used with today’s computers 
to solve MDPs with millions of states. 

• Both policy and value iteration are widely used, and it is not 
clear which, if either, is better in general. 

• In practice, these methods usually converge much faster than 
their theoretical worst-case run times. 

• On problems with large state spaces, asynchronous DP 
methods are often preferred. 

Efficiency of Dynamic Programming 



Tic Tac Toe with Dynamic 
Programming 




