
Upper confidence bound strategy on stochastical bandits

Multiarmed bandit: K arms, at each step we can choose one arm to be pulled while
the other K-1 arms stay frozen (no reward).

• Stochastic bandit: Each arm has fixed distribution in all rounds.

• Adversarial bandit: Bandits can change payout in each round.

• Markovian bandit: Activated arm changes in a ’Markovian style’.

We are only looking at stochastic bandits and Markovian bandits.

Stochastic bandits

K arms with an unknown, fixed probability distribution ν1, ..., νK on [0, 1]. At each step
t = 1, 2, ... choose arm It ∈ {1, ..., K} and draw reward XIt,t ∼ νIt independent of the
past.

Let µi be the mean of νi, µ
∗ = max

i=1,...,K
µi and i∗ ∈ argmax

i=1,..,K
µi.

The regret after n rounds is defined as Rn := max
i=1,...,K

∑n
t=1Xi,t −

∑n
t=1XIt,t

The pseudo-regret is Rn := max
i=1,...,K

E[
∑n

t=1Xi,t −
∑n

t=1XIt,t] = nµ∗ −
∑n

t=1 E[µIt ]

By definingNn(i) =
∑s

t=1 1It=i, i.e number of times arm i is pulled up to time n, and let
4i = µ∗ − µi we can rewrite the pseudo-regret as

Rn =
K∑
i=1

E[Nn(i)]µ∗ −
K∑
i=1

E[Nn(i)µi] =
K∑
i=1

4iENn(i)

The upper confidence bound strategy (UCB)

For the UCB strategy we need the following assumption:
There is a convex function ψ on R such that, ∀λ ≥ 0:

lnEeλ(X−E[X]) ≤ ψ(λ), and lnEeλ(E[X]−X) ≤ ψ(λ) (1)

Note that if X ∈ [0, 1] we can take ψ(λ) = λ2/8. (Hoeffding’s lemma)
The Legendre-Fenchel (also known as the convex conjugate) of ψ is defined as

ψ∗(ε) = sup
λ∈R

(λε− ψ(λ))

Note that for ψ(λ) = λ2/8 we have ψ∗(ε) = 2ε2

Let µ̂i,s be the sample mean of the rewards, i.e µ̂i,s = 1
s

∑s
t=1Xi,s in distribution since

the rewards are i.i.d.
By Markov’s inequality and by equation (1) we obtain

P(µi − µ̂i,s > ε) ≤ e−sψ
∗(ε) (2)

And by defining δ = e−sψ
∗(ε) we have, with probability at least 1− δ

µ̂i,s + (ψ∗)−1(
1

s
ln(

1

δ
)) > µi

Hence, for a parameter α > 0 the (α, ψ)-UCB strategy is to select the arm

It ∈ argmax
i=1,...,K

[
µ̂i,Nt−1(i) + (ψ∗)−1

(
α ln t

Nt−1(i)

)]



Theorem (Pseudo-regret for UCB strategy):
Assume that the νi satisfy the convex assumption (1). Then the pseudo-regret for a
(α, ψ)-UCB stategy with α > 2 satisfies

Rn ≤
∑
i:4i>0

(
α4i

ψ∗(4i/2)
lnn+

α

α− 2

)

If we have X ∈ [0, 1], using ψ∗(ε) = 2ε2, then

Rn ≤
∑
i:4i>0

(
2α

4i

lnn+
α

α− 2

)
Lower bound for Bernoulli-distributed rewards

For the following result, we are assuming that Xi,t ∼ Bernoulli(p, q) with p, q ∈ [0, 1]

Theorem (Lower bound):
Assume ENn(i) = o(na) for a > 0 and that 4i > 0 ∀i. Then we have

lim inf
n→∞

Rn

lnn
≥
∑
i:4i>0

4i

kl(µi, µ∗)

where kl(µi, µ
∗) = µi ln

(
µi
µ∗

)
+ (1− µi) ln

(
1−µi
1−µ∗

)
is the Kullback-Leibler divergence.

Comparision of lower & upper bound

We have that

kl(µi, µ
∗) ≤ (µ∗ − µi)2

µ∗(1− µ∗)
which follows from ln x ≤ x − 1 . Hence, the lower bound satisfies

lim inf
n→∞

Rn

lnn
≥

∑
i:µ∗−µi>0

µ∗(1− µ∗)
(µ∗ − µi)

Comparing this with the upper bound

Rn ≤
∑

i:µ∗−µi>0

(
2α

µ∗ − µi
lnn+

α

α− 2

)
we see that the difference between upper and lower bound for a Bernoulli-distributed
reward is given by some constants.
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Markovian bandits

Again we consider K arms, at each step we can choose one arm to be pulled while the
remaining K-1 arms stay frozen. But now the rewards of the pulled arm can change its
state in a ’Markovian style’, i.e the arm produces reward r(xt) and changes start to xt+1

according to a Markov dynamic x→ y with P(x, y)
The goal now it to maximize a β-discounted reward

E

[
∞∑
t=0

rit(xit(t))β
t

]

where it is the arm pulled at time t and 0 < β < 1 is the discounting factor. This
discounted reward is maximized by forward induction.
It can be shown (not part of the talk) that the biggest Gittins index

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t|xi(0) = xi

]
E
[∑τ−1

t=0 β
t|xi(0) = xi

] , where τ is a stopping time,

is enough to determine which arm is to be pulled.
Note that the numerator denotes the discounted rewards up to τ and the denumerator
represents the discounted time up to τ .
Hence, we can find the best strategy by computing the Gittins Index for all arms, where
each index is independent of all other arms. Thus, we only need to solve a K-dimensional
problem in each step, which greatly reduces the computational work.
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