
Talk 4
bounds on stochastic bandits
& idea of Markovian bandits

by Claudio and Mathias

short recall

• Multiarmed bandit: «sequentially
decide for one of K arms to pull»

short recall

• Multiarmed bandit: «sequentially
decide for one of K arms to pull»

• 3 classes of multiarmed bandits:
- stochastic bandit: each arm fixed

distribution static during all rounds

- adversarial bandit: bandit allowed to
change payouts in each round

- Markovian bandit: state of the
activated arm is allowed to change
after usage (in «Markovian style»)

stochastic bandits

.

Machine
number 1 2 i K

stochastic bandits

.

Machine
number 1

distribution

mean of
distribution
𝑚𝑒𝑎𝑛 𝜈𝑖 = 𝜇𝑖

𝜇1 . . . 𝜇2 𝜇𝑖 𝜇𝐾 . . .

. . . 𝜈1 𝜈𝐾 𝜈2 𝜈𝑖 . . .

2 i K

Regret

𝐾 ≥ 2 arms,
𝑋𝑖,𝑡 reward of arm i in time step t,
𝐼𝑡 ∈ 1,… , 𝐾 selected arm in time step t,

Regret

𝐾 ≥ 2 arms,
𝑋𝑖,𝑡 ~ 𝜈𝑖 reward of arm i in time step t,
𝐼𝑡 ∈ 1,… , 𝐾 selected arm in time step t,

Regret

𝐾 ≥ 2 arms,
𝑋𝑖,𝑡 ~ 𝜈𝑖 reward of arm i in time step t,
𝐼𝑡 ∈ 1,… , 𝐾 selected arm in time step t,

The regret after n plays:

𝑅𝑛 = max
𝑖=1,…,𝐾

 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

Regret

𝐾 ≥ 2 arms,
𝑋𝑖,𝑡 ~ 𝜈𝑖 reward of arm i in time step t,
𝐼𝑡 ∈ 1,… , 𝐾 selected arm in time step t,

The regret after n plays:

𝑅𝑛 = max
𝑖=1,…,𝐾

 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

The pseudo-regret after n plays:

𝑅 𝑛 = max
𝑖=1,…,𝐾

𝔼 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

Regret: stochastic bandits

The pseudo-regret after n plays:

𝑅 𝑛 = max
𝑖=1,…,𝐾

𝔼 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

Regret: stochastic bandits

The pseudo-regret after n plays:

𝑅 𝑛 = max
𝑖=1,…,𝐾

𝔼 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

= 𝑛 𝜇∗ − 𝔼 𝜇𝐼𝑡

𝑛

𝑡=1

where 𝜇∗ ≔ max
𝑖=1,…,𝐾

𝜇𝑖

Regret: stochastic bandits

The pseudo-regret after n plays:

𝑅 𝑛 = 𝑛 𝜇
∗ − 𝔼 𝜇𝐼𝑡

𝑛

𝑡=1

Regret: stochastic bandits

The pseudo-regret after n plays:

𝑅 𝑛 = 𝑛 𝜇
∗ − 𝔼 𝜇𝐼𝑡

𝑛

𝑡=1

= 𝔼 𝑁𝑛(𝑖)

𝐾

𝑖=1

𝜇∗ − 𝔼 𝑁𝑛 𝑖 𝜇𝑖

𝐾

𝑖=1

Regret: stochastic bandits

The pseudo-regret after n plays:

𝑅 𝑛 = 𝑛 𝜇
∗ − 𝔼 𝜇𝐼𝑡

𝑛

𝑡=1

= 𝔼 𝑁𝑛(𝑖)

𝐾

𝑖=1

𝜇∗ − 𝔼 𝑁𝑛 𝑖 𝜇𝑖

𝐾

𝑖=1

= Δ𝑖𝔼 𝑁𝑛(𝑖)

𝐾

𝑖=1

where
 𝑁𝑛 𝑖 ≔ number of times arm i pulled up to time n

Δ𝑖 ≔ 𝜇
∗ − 𝜇𝑖 = deviation of ith mean from the best mean

UCB - strategy

• Exploration – exploitation dilemma

• «optimism in face of uncertainty»

– «plausible» environment

– consistent with data

– take most «favourable» environment

Upper confidence bound theorem

• «No free lunch»-principle

• Assumption: there is a convex function 𝜓 on ℝ
with 𝜆 ≥ 0:

– log 𝔼 𝑒𝜆 𝑋−𝔼[𝑋] ≤ 𝜓(𝜆)

– log 𝔼 𝑒𝜆 𝔼 𝑋 −𝑋 ≤ 𝜓(𝜆)

• For example: if 𝑋 ∈ [0,1], take 𝜓 𝜆 =
𝜆2

8

Upper confidence bound theorem

• Legendre-Fenchel transform/convex conjugate

• 𝜓∗ 𝜆 = sup
𝜆𝜖ℝ
𝜆𝜀 − 𝜓(𝜆)

• Example: 𝜓 𝑥 = 𝑒𝑥 ⇒ sup
𝑦𝜖ℝ
𝑥𝑦 − 𝑒𝑥

⇒ 𝑦 = log 𝑥 ⇒ 𝜓∗(𝑥) = 𝑥 log 𝑥 − 𝑥

• Example: 𝜓 𝑥 =
1

𝑝
𝑥 𝑝 ⇒ 𝜓∗ 𝑥 =

1

𝑞
𝑥 𝑞

where 1 < 𝑝, 𝑞 < ∞,
1

𝑝
+
1

𝑞
= 1

• Example: 𝜓 𝜆 =
𝜆2

8
 ⇒ sup

𝜆𝜖ℝ
𝜆𝜀 −

𝜆2

8
 ⇒ 𝜀 −

𝜆

4
= 0

⇒ 𝜆 = 4𝜀 ⇒ 𝜓∗ 𝜀 = 2𝜀2

Lower bound theorem

• reward distribution 𝑋𝑖,𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝, 𝑞 ,
𝑝, 𝑞 ∈ [0,1]

• strategy statisfies

– 𝔼 𝑁𝑛(𝑖) = ℴ 𝑛
𝑎

– Δ𝑖 > 0

– 𝑎 > 0

• then 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥

Δ𝑖

𝑘𝑙(𝜇𝑖, 𝜇
∗)𝑖:Δ𝑖>0

Comparing upper and lower bound

• 𝑘𝑙 𝜇𝑖 , 𝜇
∗ = 𝜇𝑖 log

𝜇𝑖

𝜇∗
+ 1 − 𝜇𝑖 log

1−𝜇𝑖

1−𝜇∗

• 𝑘𝑙 𝜇𝑖 , 𝜇
∗ ≤

𝜇𝑖−𝜇
∗ 2

𝜇∗(1−𝜇∗)

• ⇒ 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥

𝜇∗−𝜇𝑖

𝑘𝑙 𝜇𝑖, 𝜇
∗𝑖:𝜇∗−𝜇𝑖>0

≥
𝜇∗ − 𝜇𝑖
2 𝜇𝑖 − 𝜇

∗ 2 𝜇
∗(1 − 𝜇∗)

𝑖:𝜇∗−𝜇𝑖>0

=
𝜇∗(1 − 𝜇∗)

𝜇∗ − 𝜇𝑖
𝑖:𝜇∗−𝜇𝑖>0

Comparing upper and lower bound

• 𝑅 𝑛 ≤
2𝛼

𝜇∗−𝜇𝑖
log 𝑛 +

𝛼

𝛼−2𝑖:𝜇∗−𝜇𝑖>0

• 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥

𝜇∗(1−𝜇∗)

𝜇∗−𝜇𝑖
𝑖:𝜇∗−𝜇𝑖>0

Bandit process

• Bandit process: process of a single machine/arm
• 2 possible actions of the machine:

– continue:
• produces reward 𝑟 𝑥𝑡 , 𝑥𝑡 state of machine at time t
• the state changes to 𝑥𝑡+1 according to Markov dynamics 𝑥 → 𝑦 with

probability 𝑃(𝑥, 𝑦)

– freeze:
• produces no reward
• state does not change

• states of the machine
 follow a Markov process
 transition to other states
 with given transition probabilities

Markovian bandit

• Markovian bandits:
– collection of K bandit processes
– at each time t: exactly one machine continued, all others

stay frozen

Markovian bandit

• Markovian bandits:
– collection of K bandit processes
– at each time t: exactly one machine continued, all others

stay frozen

• Objective to optimize: 𝜷-discounted reward (𝑖𝑡: arm

pulled at time t)

𝔼 𝑟𝑖𝑡 𝑥𝑖𝑡 𝑡 𝛽
𝑡

∞

𝑡=0

, 0 < 𝛽 < 1

𝛽: discounting factor, balances exploration-exploitation
trade-off, keeps sum finite

Markovian bandits

.

Machine
number 1 2 i K

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Choose
machine i

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Choose
machine i

Other machines stay
frozen
 states dont change

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Produces
reward 𝒓(𝒙𝒕)

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Change State
of machine i

Markovian bandits

.

Machine
number 1 2 i K

state of
machine

Prolem: How to maximize?

Objective: 𝛽-discounted reward (𝑖𝑡: arm pulled at time t)

𝔼 𝑟𝑖𝑡 𝑥𝑖𝑡 𝑡 𝛽
𝑡

∞

𝑡=0

, 0 < 𝛽 < 1

• Possible Solution: Dynamic Programming Solution
computationally very expensive

• Better Solution: Forward Indcution can show that
optimal solution of this type computationally much
cheaper

Solution: Forward induction

• Idea: Allow the number of 𝜏 steps over which
we look ahead at each stage, to depend on
how system evolves while these steps are
taking place i.e. stopping time!

Car journey example

• Problem:
– choose route for journey by car
– Several different possible routes, all of same length which

itersect at various points
– Objective: choose route which minimizes time taken for

journey

Car journey example

• Problem:
– choose route for journey by car
– Several different possible routes, all of same length which

itersect at various points
– Objective: choose route which minimizes time taken for

journey

• Model:
– Markov decision process
– Distance covered so far = «time» variable
– Time take to cover each successive mile = negative reward
– position=state
– Action space = roads to continue at crossroads

Car journey example

• Suboptimality:
– 1st stage in forward induction find route 𝜁1 and

distance 𝜎1 along 𝜁1 from the start point st. average
speed in traveling distance 𝜎1 along 𝜁1 maximized

– Suboptimal route example:
Start with short stretch of highway, followed by very slow
section vs. choose a trunk road which permits good steady
average speed (over all faster than the other)

– Trouble:
irrevocable decisions have been take at each cross-roads
there are alternative routes that are avilable at a stage but
aren’t available later on if they are not chosen irrevocable
decisions

Optimality of forward induction

• Forward induction optimal if decisions not
irrevocable

• Irrevocable:
any alternative that is avilable at any stage and is not
chosen, my be chosen at a later stage (with exactly the
same sequence of rewards (appart from discount
factor))

• Optimality for Markovian bandits:
decisions made not irrevocable, i.e. any alternative not
chosen is available in every upcomming time (because
of freezing)
 Forward induction optimal for Markovian bandits

Forward induction maximizations

• 2 maximizations:

– Inner maximization:

• Given: decision rule for taking a sequence of decisions

• Maximize: choose stopping time 𝜏 to maximize the
conditional expected reward rate

– Outer maximization:

• Given: stopping time 𝜏 from the inner maximization

• Maximize: choose decision rule to maximize the result
of the inner maximization for that decision rule

Forward induction process

• Resulting Procedure:

– At t=0:

• Given: initial state of process

• Select: decision rule and stopping time 𝜏1 and follow
for next 𝜏1 steps

– For t=1,2,…

• Given: info accumulated so far

• Select: new decision rule and stopping time 𝜏𝑡+1 by
conditioning on info accumulated so far and follow it
for next 𝜏𝑡+1 steps

Gittins Index Theorem

Maximal expected discounted reward:

Obtained by always continuing the bandit
having gratest Gittins index

𝐺𝑖 𝑥𝑖 = sup
𝜏≥1

𝔼 𝑟𝑖 𝑥𝑖 𝑡 𝛽
𝑡 | 𝑥𝑖 0 = 𝑥𝑖

𝜏−1
𝑡=0

𝔼 𝛽𝑡 | 𝑥𝑖 0 = 𝑥𝑖
𝜏−1
𝑡=0

where 𝜏 is a stopping time.

Gittins Index

𝐺𝑖 𝑥𝑖 = sup
𝜏≥1

𝔼 𝑟𝑖 𝑥𝑖 𝑡 𝛽
𝑡 | 𝑥𝑖 0 = 𝑥𝑖

𝜏−1
𝑡=0

𝔼 𝛽𝑡 | 𝑥𝑖 0 = 𝑥𝑖
𝜏−1
𝑡=0

where 𝜏 is a stopping time.

Discounted reward up to 𝜏

Discounted time up to 𝜏

Gittins Index: Adventage

• find best strategy by only computing Gittins
indexes of all arms

• Gittins index of one arm doesn’t depend on
other arms huge computational savings
compared with dynamic programming

• only need to solve K «one-dimensional»
problems in each time step

Example: Single Machine Scheduling

• Problem: n jobs to be scheduled on one machine

• job i has processing time 𝑡𝑖 and positive reward 𝑟𝑖

• If job 1 processed immediately before job 2, then:
𝑟1𝛽
𝑡1 + 𝑟2𝛽

𝑡1+𝑡2 > 𝑟2𝛽
𝑡2 + 𝑟1𝛽

𝑡2+𝑡1

⇔ 𝐺1 = 1 − 𝛽
𝑟1𝛽
𝑡1

1−𝛽𝑡1
 > 1 − 𝛽

𝑟2𝛽
𝑡2

1−𝛽𝑡2
= 𝐺2

• Total discounted reward is maximized by choosing always
job with biggest 𝐺𝑖

Example: Single Machine Scheduling

• Obtaind by calculation: best strategy always

choose biggest
𝑟𝑖𝛽
𝑡𝑖

1−𝛽𝑡𝑖

• The same obtained with Gittins index:

𝐺𝑖 𝑥𝑖 = sup
𝜏≥1

𝔼 𝑟𝑖 𝑥𝑖 𝑡 𝛽
𝑡 | 𝑥𝑖 0 = 𝑥𝑖

𝜏−1
𝑡=0

𝔼 𝛽𝑡 | 𝑥𝑖 0 = 𝑥𝑖
𝜏−1
𝑡=0

 =
𝑟𝑖𝛽
𝑡𝑖

1+𝛽+⋯𝛽𝑡𝑖−1

optimal stopping time 𝜏 = 𝑡𝑖

