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short recall 

• Multiarmed bandit: «sequentially 
decide for one of K arms to pull»  

• 3 classes of multiarmed bandits: 
- stochastic bandit: each arm fixed 

distribution static during all rounds 

- adversarial bandit: bandit allowed to 
change payouts in each round 

- Markovian bandit: state of the 
activated arm is allowed to change 
after usage (in «Markovian style») 



stochastic bandits 

.   .   .  .   .   .  

Machine  
number 1 2 i K .   .   . .   .   . 



stochastic bandits 

.   .   .  .   .   .  

Machine  
number 1 

distribution 

mean of  
distribution 
𝑚𝑒𝑎𝑛 𝜈𝑖 = 𝜇𝑖  

𝜇1 .   .   . 𝜇2 𝜇𝑖  𝜇𝐾 .   .   . 

.   .   . 𝜈1 𝜈𝐾 𝜈2 𝜈𝑖 .   .   . 

2 i K .   .   . .   .   . 



Regret 
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𝐼𝑡 ∈ 1,… , 𝐾    selected arm in time step t,  
   

 

 



Regret 

𝐾 ≥ 2    arms,  
𝑋𝑖,𝑡 ~ 𝜈𝑖    reward of arm i in time step t,  
𝐼𝑡 ∈ 1,… , 𝐾    selected arm in time step t,  
    
 

 

 



Regret 

𝐾 ≥ 2    arms,  
𝑋𝑖,𝑡 ~ 𝜈𝑖    reward of arm i in time step t,  
𝐼𝑡 ∈ 1,… , 𝐾    selected arm in time step t,  
    
The regret after n plays:  

𝑅𝑛 = max
𝑖=1,…,𝐾

 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

 

 
 

 



Regret 

𝐾 ≥ 2    arms,  
𝑋𝑖,𝑡 ~ 𝜈𝑖    reward of arm i in time step t,  
𝐼𝑡 ∈ 1,… , 𝐾    selected arm in time step t,  
    
The regret after n plays:  

𝑅𝑛 = max
𝑖=1,…,𝐾

 𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

 

 

The pseudo-regret after n plays:  

𝑅 𝑛 = max
𝑖=1,…,𝐾

𝔼  𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

 

 

 



Regret: stochastic bandits  

The pseudo-regret after n plays:  

𝑅 𝑛     = max
𝑖=1,…,𝐾

𝔼  𝑋𝑖,𝑡 − 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

𝑛

𝑡=1

 

 

 

 



Regret: stochastic bandits  
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where 𝜇∗ ≔ max
𝑖=1,…,𝐾

𝜇𝑖 
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The pseudo-regret after n plays:  
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=  Δ𝑖𝔼 𝑁𝑛(𝑖)

𝐾

𝑖=1

 

where  
 𝑁𝑛 𝑖  ≔ number of times arm i pulled up to time n 

Δ𝑖 ≔ 𝜇
∗ − 𝜇𝑖  = deviation of ith mean from the best mean 



UCB - strategy 

• Exploration – exploitation dilemma 

• «optimism in face of uncertainty» 

– «plausible» environment 

– consistent with data 

– take most «favourable» environment 

 



Upper confidence bound theorem 

• «No free lunch»-principle 

• Assumption: there is a convex function 𝜓 on ℝ 
with 𝜆 ≥ 0:  

– log 𝔼 𝑒𝜆 𝑋−𝔼[𝑋] ≤ 𝜓(𝜆) 

– log 𝔼 𝑒𝜆 𝔼 𝑋 −𝑋 ≤ 𝜓(𝜆) 

• For example: if 𝑋 ∈ [0,1], take 𝜓 𝜆 =
𝜆2

8
 



Upper confidence bound theorem 

• Legendre-Fenchel transform/convex conjugate 

• 𝜓∗ 𝜆 = sup
𝜆𝜖ℝ
𝜆𝜀 − 𝜓(𝜆)  

• Example: 𝜓 𝑥 = 𝑒𝑥   ⇒   sup
𝑦𝜖ℝ
𝑥𝑦 − 𝑒𝑥 

⇒ 𝑦 = log 𝑥   ⇒   𝜓∗(𝑥) = 𝑥 log 𝑥 − 𝑥 

• Example: 𝜓 𝑥 =
1

𝑝
𝑥 𝑝   ⇒    𝜓∗ 𝑥 =

1

𝑞
𝑥 𝑞 

where 1 < 𝑝, 𝑞 < ∞,  
1

𝑝
+
1

𝑞
= 1 

• Example: 𝜓 𝜆 =
𝜆2

8
  ⇒  sup

𝜆𝜖ℝ
𝜆𝜀 −

𝜆2

8
  ⇒ 𝜀 −

𝜆

4
= 0   

⇒   𝜆 = 4𝜀  ⇒ 𝜓∗ 𝜀 = 2𝜀2 



Lower bound theorem 

• reward distribution 𝑋𝑖,𝑡~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝, 𝑞 ,
𝑝, 𝑞 ∈ [0,1] 

• strategy statisfies  

– 𝔼 𝑁𝑛(𝑖) = ℴ 𝑛
𝑎  

– Δ𝑖 > 0 

– 𝑎 > 0 

• then 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥   

Δ𝑖

𝑘𝑙(𝜇𝑖, 𝜇
∗)𝑖:Δ𝑖>0

  



Comparing upper and lower bound 

• 𝑘𝑙 𝜇𝑖 , 𝜇
∗ = 𝜇𝑖 log

𝜇𝑖

𝜇∗
+ 1 − 𝜇𝑖  log 

1−𝜇𝑖

1−𝜇∗
 

• 𝑘𝑙 𝜇𝑖 , 𝜇
∗ ≤

𝜇𝑖−𝜇
∗ 2

𝜇∗(1−𝜇∗)
 

• ⇒   𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥   

𝜇∗−𝜇𝑖

𝑘𝑙 𝜇𝑖, 𝜇
∗𝑖:𝜇∗−𝜇𝑖>0
  

≥  
𝜇∗ − 𝜇𝑖
2 𝜇𝑖 − 𝜇

∗ 2 𝜇
∗(1 − 𝜇∗)

𝑖:𝜇∗−𝜇𝑖>0

=   
𝜇∗(1 − 𝜇∗)

𝜇∗ − 𝜇𝑖
𝑖:𝜇∗−𝜇𝑖>0

 

 



Comparing upper and lower bound 

• 𝑅 𝑛  ≤   
2𝛼

𝜇∗−𝜇𝑖
log 𝑛 + 

𝛼

𝛼−2𝑖:𝜇∗−𝜇𝑖>0
 

• 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
𝑅 𝑛

log (𝑛)
 ≥    

𝜇∗(1−𝜇∗)

𝜇∗−𝜇𝑖
𝑖:𝜇∗−𝜇𝑖>0

 



Bandit process 

• Bandit process: process of a single machine/arm 
• 2 possible actions of the machine: 

– continue:  
• produces reward 𝑟 𝑥𝑡 , 𝑥𝑡  state of machine at time t 
• the state changes to 𝑥𝑡+1 according to Markov dynamics 𝑥 → 𝑦 with 

probability 𝑃(𝑥, 𝑦) 

– freeze:  
• produces no reward  
• state does not change  

• states of the machine  
    follow a Markov process 
     transition to other states 
    with given transition probabilities 

  
 



Markovian bandit 

• Markovian bandits:  
– collection of K bandit processes  
– at each time t:  exactly one machine continued, all others 

stay frozen 
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• Markovian bandits:  
– collection of K bandit processes  
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stay frozen 

 
• Objective to optimize: 𝜷-discounted reward     (𝑖𝑡: arm 

pulled at time t) 

𝔼  𝑟𝑖𝑡 𝑥𝑖𝑡 𝑡  𝛽
𝑡

∞

𝑡=0

, 0 < 𝛽 < 1 

𝛽: discounting factor, balances exploration-exploitation 
trade-off, keeps sum finite 
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Choose 
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Other machines stay 
frozen  
 states dont change 



Markovian bandits 

.   .   .  .   .   .  

Machine  
number 1 2 i K .   .   . .   .   . 

state of  
machine 

Produces 
reward 𝒓(𝒙𝒕) 
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Prolem: How to maximize? 

Objective: 𝛽-discounted reward (𝑖𝑡: arm pulled at time t) 

𝔼  𝑟𝑖𝑡 𝑥𝑖𝑡 𝑡  𝛽
𝑡

∞

𝑡=0

, 0 < 𝛽 < 1 

 

• Possible Solution: Dynamic Programming Solution   
computationally very expensive 

• Better Solution: Forward Indcution  can show that 
optimal solution of this type  computationally much 
cheaper 



Solution: Forward induction 

• Idea: Allow the number of 𝜏 steps over which 
we look ahead at each stage, to depend on 
how system evolves while these steps are 
taking place  i.e. stopping time! 



Car journey example 

• Problem:  
– choose route for journey by car 
– Several different possible routes, all of same length which 

itersect at various points 
– Objective: choose route which minimizes time taken for 

journey   



Car journey example 

• Problem:  
– choose route for journey by car 
– Several different possible routes, all of same length which 

itersect at various points 
– Objective: choose route which minimizes time taken for 

journey   

• Model: 
– Markov decision process 
– Distance covered so far = «time» variable  
– Time take to cover each successive mile = negative reward 
– position=state 
– Action space = roads to continue at crossroads 



Car journey example 

• Suboptimality: 
– 1st stage in forward induction  find route 𝜁1 and 

distance 𝜎1 along 𝜁1 from the start point st. average 
speed in traveling distance 𝜎1 along 𝜁1 maximized 

– Suboptimal route example:  
Start with short stretch of highway, followed by very slow 
section vs. choose a trunk road which permits good steady 
average speed (over all faster than the other) 

– Trouble:  
irrevocable decisions have been take at each cross-roads  
there are alternative routes that are avilable at a stage but 
aren’t available later on if they are not chosen irrevocable 
decisions 

 

 



Optimality of forward induction 

• Forward induction optimal if decisions not 
irrevocable  

• Irrevocable:  
any alternative that is avilable at any stage and is not 
chosen, my be chosen at a later stage (with exactly the 
same sequence of rewards (appart from discount 
factor)) 

• Optimality for Markovian bandits: 
decisions made not irrevocable, i.e. any alternative not 
chosen is available in every upcomming time (because 
of freezing)  
  Forward induction optimal for Markovian bandits 

 
 



Forward induction maximizations 

• 2 maximizations: 

– Inner maximization:  

• Given: decision rule for taking a sequence of decisions 

• Maximize: choose stopping time 𝜏 to maximize the 
conditional expected reward rate 

– Outer maximization:  

• Given: stopping time 𝜏 from the inner maximization 

• Maximize: choose decision rule to maximize the result 
of the inner maximization for that decision rule 



Forward induction process 

• Resulting Procedure:  

– At t=0: 

• Given: initial state of process 

• Select: decision rule and stopping time 𝜏1 and follow 
for next 𝜏1 steps 

– For t=1,2,… 

• Given: info accumulated so far 

• Select: new decision rule and stopping time 𝜏𝑡+1 by 
conditioning on info accumulated so far and follow it 
for next 𝜏𝑡+1 steps 



Gittins Index Theorem 

Maximal expected discounted reward: 

Obtained by always continuing the bandit 
having gratest Gittins index 

 

𝐺𝑖 𝑥𝑖 = sup
𝜏≥1

𝔼  𝑟𝑖 𝑥𝑖 𝑡 𝛽
𝑡 | 𝑥𝑖 0 = 𝑥𝑖

𝜏−1
𝑡=0

𝔼  𝛽𝑡 | 𝑥𝑖 0 = 𝑥𝑖
𝜏−1
𝑡=0

 

 

where 𝜏 is a stopping time. 
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where 𝜏 is a stopping time. 

Discounted reward up to 𝜏 

Discounted time up to 𝜏  



Gittins Index: Adventage 

• find best strategy by only computing Gittins 
indexes of all arms 

• Gittins index of one arm doesn’t depend on 
other arms  huge computational savings 
compared with dynamic programming 

• only need to solve K «one-dimensional» 
problems in each time step 

 



Example: Single Machine Scheduling 

• Problem: n jobs to be scheduled on  one machine 

• job i has processing time 𝑡𝑖 and positive reward 𝑟𝑖  

• If job 1 processed immediately before job 2, then:  
𝑟1𝛽
𝑡1 + 𝑟2𝛽

𝑡1+𝑡2 > 𝑟2𝛽
𝑡2 + 𝑟1𝛽

𝑡2+𝑡1 

⇔  𝐺1 = 1 − 𝛽
𝑟1𝛽
𝑡1

1−𝛽𝑡1
 >  1 − 𝛽

𝑟2𝛽
𝑡2

1−𝛽𝑡2
= 𝐺2  

• Total discounted reward is maximized by choosing always 
job with biggest 𝐺𝑖 



Example: Single Machine Scheduling 

• Obtaind by calculation: best strategy  always 

choose biggest  
𝑟𝑖𝛽
𝑡𝑖

1−𝛽𝑡𝑖
 

• The same obtained with Gittins index: 

𝐺𝑖 𝑥𝑖 = sup
𝜏≥1

𝔼  𝑟𝑖 𝑥𝑖 𝑡 𝛽
𝑡 | 𝑥𝑖 0 = 𝑥𝑖

𝜏−1
𝑡=0

𝔼  𝛽𝑡 | 𝑥𝑖 0 = 𝑥𝑖
𝜏−1
𝑡=0

 

 = 
𝑟𝑖𝛽
𝑡𝑖

1+𝛽+⋯𝛽𝑡𝑖−1
  

optimal stopping time 𝜏 = 𝑡𝑖 
 

 

 


