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Problem
You are faced repeatedly with a
choice among n di�erent options.
After each choice you receive a
numerical reward. Your objective
is to maximize the expected total
reward.
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• Slot machine are known as
one-armed bandits, because
they were originally operated
by one lever on the side of
the machine.

• A gambler strategically
operating multiple machines
in order to draw the highest
possible pro�ts is called a
multi-armed bandit.
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n-armed bandit problem

• The reward for each one-armed bandit has a di�erent
distribution, therefore a di�erent expectation.

• If the expectations were known, it would be trivial to solve the
n-armed bandit problem: select the action with the highest
mean reward.

• This is why we assume that we don't know the expected
rewards, although we might have estimates.
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Exploring and exploiting problem

• At any time step there is at least one action whose estimated
expected reward is greatest. We call this a greedy action.

• If you select a greedy action, we say that you are exploiting

your current knowledge of the values of the actions.

• If instead you select one of the non-greedy actions, then we
say you are exploring, because this enables you to improve
your estimate of the non-greedy action's expected reward.
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One-armed bandit
We denote the true mean reward of an action a as q(a), and the
estimated mean reward on the t-th time step as Qt(a).

Estimator for the mean reward (sample-average)

If by the t-th time step action a has been chosen Nt(a) times prior
to t, yielding rewards R1,R2, . . . ,RNt(a), then its value is estimated
to be

Qt(a) =
R1 + R2 + · · ·+ RNt(a)

Nt(a)
(1)

Law of large numbers

As Nt(a)→∞, Qt(a) converges to q(a).
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Action-selection rules

• The greedy action selection method:

At = argmax
a

Qt(a) (2)

• The ε-greedy methods: behave greedily most of the time, but
every once in a while, say with small probability ε, select
randomly from amongst all the actions with equal probability
independently of the action mean rewards estimates
(advantage: as Nt(a)→∞, we ensure that Qt(a) converge to
q(a)).
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Figure: Average performance of ε-greedy action-value methods on the

10-armed testbed. These data are averages over 2000 tasks.
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Incremental Implementation

• So far we estimated the action mean rewards as sample
averages of observed rewards.

• Problem: the memory and computational requirements for the
implementation grow over time without bound.

• Solution: let Qk denote the estimate for the k-th reward, that
is the average of its �rst k − 1 rewards, and a k-th reward for
the action, Rk . Then:

Qk+1 = Qk +
1

k
[Rk − Qk ] (3)

• General form:

New Estimate ← OldEstimate + StepSize[Target − OldEstimate]
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Non-stationary Problem

• So far: stationary environment; the bandit is not changing
over time.

• In practice, this hypothesis is very often violated or impossible
to verify, and we encounter non-stationarity.

• In such cases weight recent rewards more heavily than
long-past ones.

•
Qk+1 = Qk + α[Rk − Qk ] (4)

where the step-size parameter α ∈ (0, 1] is constant.
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Non-stationary Problem - 2

• Weighted average of the past rewards and of the initial
estimate Q1:

Qk+1 = (1− α)kQ1 +
k∑

i=1

α(1− α)k−iRi (5)

• The quantity 1− α is less than 1, and thus the weight given to
Ri decreases as the number of intervening rewards increases.
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Upper-Con�dence-Bound Action Selection

• In the ε-greedy method, we choose another action (that is not
the greedy one), with probability ε.

• Better would be to select among the non-greedy actions the
one which has the highest probability to be the greedy action
(with the biggest expectation of reward):

At = argmax
a

[
Qt(a) + c

√
lnt

Nt(a)

]
(6)

where c > 0 controls the degree of exploration. If Nt(a) = 0,
then a is considered to be a maximising action.
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• Set µ̂1 = · · · = µ̂k = 0, n1 = · · · = nk = 0

• For t = 1 : T :

• For each arm i calculate UCB(i) = µ̂i + 2
√

ln t
ni

• Pick arm j = argmax
i

UCB(i) and observe yt

• Set nj ← nj + 1 and µ̂j ← µ̂j + 1

nj
(yt − µ̂j).
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Figure: Average performance of UCB action selection on the 10-armed

testbed.
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Gradient Bandits

• So far, we considered methods that estimate the mean reward
of an action and use those estimators to select an action.

• Here we consider learning a numerical preference Ht(a) for
each action a. The larger the preference, the more often that
action is taken, but the preference has no interpretation in
terms of reward:

P[At = a] =
eHt(a)∑n
b=1 e

Ht(b)
= πt(a). (7)

• Initially all preferences are the same (e.g. H1(a) = 0, ∀a).
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Gradient Bandits - 2

• On each step, after selecting the action At and receiving
reward Rt , the preferences are updated by:

Ht+1(At) = Ht(At) + α(Rt − R̄t)(1− πt(At)), and

Ht+1(a) = Ht(a)− α(Rt − R̄t)πt(a), ∀a 6= At (8)

where α > 0 is a step-size parameter, and R̄t ∈ R is the
average of all the rewards up through and including t.
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Figure: Average performance of the gradient-bandit algorithm on the

10-armed testbed.
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• There are three fundamental formalizations of the bandit
problem depending on the assumed nature of the reward
process:

stochastic, adversial and Markovian.

• We have already seen the idea of the stochastic bandit
problem. Now we de�ne it more formally.
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The stochastic bandit problem

Set-up

Given K ≥ 2 arms and sequences Xi ,1, Xi ,2, . . . of unknown
rewards associated with each arm i = 1, . . . ,K , we study
forecasters that at each time step t = 1, 2, . . . select an arm It and
receive the associated reward XIt ,t .

The stochastic bandit problem

Known parameters: number of arms K and of rounds n ≥ K .
Unknown parameters: K probability distributions ν1, . . . , νK on
[0, 1].
For each round t = 1, 2, . . .

• the forecaster chooses It ∈ {1, . . . ,K};
• given It , the environment draws the reward XIt ,t ∼ νIt
independently from the past and reveals it to the forecaster.
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• The goal is the same than before: maximize the reward.

• Analogously to this is to minimize the regret.

• The regret is what we lose by not playing the optimal strategy:

Rn = max
i=1,...,K

n∑
t=1

Xi ,t −
n∑

t=1

XIt ,t . (9)
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• Expected regret:

E[Rn] = E

[
max

i=1,...,K

n∑
t=1

Xi ,t −
n∑

t=1

XIt ,t

]
(10)

• Pseudo-regret:

R̄n = max
i=1,...,K

E[
n∑

t=1

Xi ,t −
n∑

t=1

XIt ,t ] (11)

• Note: The pseudo-regret is a weaker notion of regret, since
one competes against the action which is optimal only in
expectation. More formally:

R̄n ≤ E[Rn] (12)
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• In the stochastic setting, the pseudo-regret can be written as

R̄n = n max
i=1,...,k

µi −
n∑

t=1

E[µIt ] (13)
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Thompson Sampling

• In one of the earliest works on stochastic bandit problems,
Thompson proposed a randomized Bayesian algorithm to
minimize regret.

• Basic idea: assume a simple prior distribution on the
parameters of the reward distribution of every arm, and at any
time step, play an arm according to its posterior probability of
being the best arm.
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Thompson Sampling - 2

• We assume that the reward µi ∈ [0, 1] have an initial
distribution, and πi ,t be the posterior distribution for µi at
time t. The reward at time t of arm i is θi ,t ∼ πi ,t , where θi ,t
are independent. The strategy is implemented by sampling
from the posterior.

• The strategy is then given by argmax
i=1,...,K

θi ,t .
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Thompson Sampling for the Bernoulli bandit problem

• In this case, the rewards are either 0 or 1, and for arm i , the
probability of success is µi .

• Beta distribution turns out to be a very convenient choice of
priors for Bernoulli rewards:(

f (x ;α, β) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1
)
.

• Why? Because if the prior is a Beta(α, β) distribution, then
after observing a Bernoulli trial,the posterior distribution is
simply Beta(α+ 1, β) or Beta(α, β + 1) depending on whether
the trial resulted in a success or failure.
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Thompson Sampling for Bernoulli bandit - Algorithm

The Thompson Sampling algorithm initially assumes arm i to have
prior Beta(1, 1) on µi , which is natural because Beta(1, 1) is the
uniform distribution on (0, 1). For each arm i = 1, . . . ,N set
Si = 0, Fi = 0. For each t = 1, 2, . . . do:

• For each arm i = 1, . . . ,N, sample µi (t) from the Beta(Si + 1,
Fi + 1) distribution.

• Play arm i(t) = armaxµi (t).

• If r = 1, Si(t) = Si(t) + 1 else Fi(t) = Fi(t) + 1
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The adversial bandit problem

• Suppose we are in a rigged casino.

• The owner/adversary sets the gain Xi ,t to some arbitrary value
gi ,t ∈ [0, 1].

• The owner is called oblivious if his choice does not depend on
the strategy of the player.

• It's called non-oblivious if his choice depends on the strategy
of the player, which means:

gi ,t = gi ,t(I1, . . . , It−1) (14)
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The adversial bandit problem - 2

Known parameters: number of arms K ≥ 2 and (possibly) number
of rounds n ≥ K . For each round t = 1, 2, . . .

(1) the forecaster chooses It ∈ {1, . . . ,K}, possibly with the help
of external randomization,

(2) simultaneously, the adversary selects a gain vector
gt = (g1,t , . . . , gK ,t) ∈ [0, 1]K , possibly with the help of
external randomization,and

(3) the forecaster receives (and observes) the reward gIt ,t while the
gains of the other arms are not observed.
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The adversial bandit problem - 3

• For the adversial bandit problem, the pseudo-regret can be
de�ned as

R̄n = max
i=1,...,K

E

[
n∑

t=1

gi ,t −
n∑

t=1

gIt ,t

]
(15)

• Note: The adversial gains gi ,t(I1, . . . , It−1) could be di�erent
than those chosen by the player with the optimal tactic.
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Markovian bandit problem

• In the Markovian bandit problem, the reward processes are
neither i.i.d. nor adversial.

• Arms are associated with K Markov processes, each with its
own state space.

• Each time an arm i is chosen in state s, a stochastic reward is
drawn from a probability distribution νi ,s , and the state of the
reward process for arm i changes in a Markovian fashion,
based on an underlying stochastic transition matrix Mi .
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Contextual bandit problem

• So far: only non associative tasks, in which there is no need to
associate di�erent actions with di�erent situations. In these
tasks the learner either tries to �nd a single best action when
the task is stationary, or tries to track the best action as it
changes over time when the task is non stationary.

• Now: in the associative search, we act di�erently according to
the situation we are in, before taking an action.

• Example: you are confronted with several n-armed bandits
chosen at random and your only clue about them is, for
example, their colour.
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News recommendation example

• Lets see an application of the contextual bandit problem ©

• Web services try to adapt their services (advertisement, news,
articles, ...) to individual users by making use of user
information.

• This can be seen as a multi-armed bandit problem where we
have additional information about the slot machine.

• One click of the user on the advertisement or new correspond
to the reward.

• The action corresponds to the choice of the advertisement or
new which we think the user will most likely click (so for which
we would most likely got the reward).
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Example of a contextual bandit problem

• We have the choice between four links and we have to decide
which one we highlight on the yahoo front page, with the aim
that the user clicks on it. We have also information about the
user, and therefore highlight an article according to his
interests.

• This problem can be seen as a contextual bandit problem,
where the reward is a click on the link we have highlighted.
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Contextual bandit - algorithm

• A contextual bandit algorithm A proceeds in discrete trials
t = 1, 2, 3, . . . . In trial t:

1. The algorithm observes the current user ut and a set At of
arms or actions together with their feature vectors xt,a for
a ∈ A. The vector xt,a summarizes information of both the
user ut and arm a, and will be referred as the context.

2. Based on observed payo�s in previous trials, A chooses an arm
at ∈ At , and receives payo� rt,at whose expectation depends
on both the user ut and the arm at .

3. The algorithm then improves its arm-selection strategy with
the new observation (xt,a, at , rt,at ).
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T-trial regret RA

• The total T -trial payo� of A is de�ned as
∑T

t=1 rt,at .

• De�ne the optimal expected T -trial payo� as E[
∑T

t=1 rt,a∗t ],
where a∗t is the arm with maximum expected payo� at trial t.

• Goal: write an algorithm A so that the expected payo� is
maximized.

• As we have already seen this is equivalent to �nd an algorithm
which minimizes the regret with respect to the optimal
arm-selection strategy:

RA(T ) = E[
T∑
t=1

rt,a∗t ]− E[
T∑
t=1

rt,at ]. (16)



Multi-arm Bandits Application to Blackjack

A special case of the contextual bandit problem

A special case of the contextual bandit problem is the n-armed
bandit problem, in which:

• The arm set A remains unchanged and contains n arms ∀t.
• The situation st is the same ∀t.

The n-armed bandit problem is also called the context free bandit
problem. While the context free bandit problems are extensively
studied and well understood, the contextual bandit problem has
remained challenging.
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• We want to �nd an algorithm that solves the contextual bandit
problem.

• Idea: use the UCB method
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Linear Upper Bound Con�dence - 1

• We assume the expected payo� of an arm a is linear in its
d-dimensional feature xt,a with some unknown coe�cient
vector θ∗a , namely, ∀t,

rt,a = xTt,aθ
∗
a + εt (17)

which is equivalent to E[rt,a | xt,a] = xTt,aθ
∗
a . The parameters

are not shared among di�erent arms.

• We wish to minimize the square loss

θ̂a = argmin
θ∗a

m∑
t=1

(rt,a − xTt,aθ
∗
a)2 (18)
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Linear Upper Bound Con�dence - 2

• Da design matrix of dimension m × d at trial t, ba ∈ Rm

response vector.

• Applying ridge regression to the training data (Da, ba) gives
θ̂a = (DT

a Da + Ia)−1DT
a ba, where Id is the d × d identity

matrix.

• Theorem: for the estimated coe�cients it holds that

| xTt,aθ̂a − E[rt,a | xt,a] |≤ α
√
xTt,a(DT

a Da + Id)−1xt,a (19)

for any δ > 0 and xt,a ∈ Rd , where α = 1 +
√

ln(2/δ)
2

.
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Linear Upper Bound Con�dence - 3

• The inequality gives a reasonably tight UCB for the expected
payo� of arm. At each trial t, choose:

at = argmax
a∈At

(xTt,aθ̂a + α
√

xTt,aA
−1
a xt,a), (20)

where Aa = DT
a Da + Id .
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LinUCB algorithm
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Summary

Multi-arm Bandits

Application to Blackjack
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Application to Blackjack

Setting: we have two choices

• In the �rst one we have to decide between n actions, e.g. hit,
stand or double down. We ignore splitting.

• In the second one we always stand.

The �rst decision can be seen as a n-armed bandit problem. Our
example can be seen as a 3-armed bandit problem, since we have
the choice between 3 actions (hit, stand and double down). They
have a di�erent reward distribution and so a di�erent reward
expectation.
Goal: Maximize the reward.
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Application to Blackjack - greedy methods

We have seen some methods to solve the n-armed bandit problem,
let's apply them to our 3-armed bandit problem.

• The greedy method: choose at random e.g. t = 1000 times
one of this 3 actions and then make your estimator for the
expectation of the reward:

Q(a) =
R1+···+RNt (a)

Nt(a)

N(a) = times we have chosen the action a until time t. Then
exploit the greedy actions, i.e. choose always the action with
the greatest estimator expectation.

• The ε greedy method: choose with with probability ε an action
which is not the greedy action.
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Application to Blackjack - other methods

• In the Upper-Con�dence-Bound Action Selection Method we
use the nice formula:

At = argmax
a

[Qt(a) + c
√

ln t
Nt(a) ].

• The Thompson sampling methods if we adapt the reward such
that they are bounded in [0, 1], etc.
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Application to Blackjack - Contextual bandit problem

• There is another way to approach this problem: we can see it
as a contextual bandit problem.

• The idea is to look at every possible con�guration of cards the
dealer and the player have and what actions were the best in
the di�erent situations, i.e. we implement with lots of single
bandits, without information sharing.

• So as in the contextual bandit problem we have to associate
di�erent actions with di�erent situations (con�guration of
cards).
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Application to Blackjack - UCB

• A way to solve the contextual bandit problem is to use the
already seen linear UCB algorithm:

• Feature vector xt,a is the information we have on the players
and dealers cards.

• E[rt,a | xt,a] is the expectation of the reward given xt,a. Goal:
maximize it.

• The rows of the design matrix Da correspond to the di�erent
combinations of cards have.
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