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A First Example
In 2006, Singapore Airlines decided to place an order for new 
aircraft. It contained the following jets:

- 20 Boeing 787
- 20 Airbus A350
- 9 Airbus A380

How was this decision taken?

It was based on a combination of time series analysis on 
airline passenger trends, plus knowing the corporate plans 
for maintaining or increasing the market share. 
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A Second Example
•     Taken from a former research project @ ZHAW
•     Airline business: # of checked-in passengers per month
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Some Properties of the Series
•     Increasing trend (i.e. generally more passengers)
•     Very prominent seasonal pattern (i.e. peaks/valleys)
•     Hard to see details beyond the obvious

Goals of the Project
• Visualize, or better, extract trend and seasonal pattern
•     Quantify the amount of random variation/uncertainty
•     Provide the basis for a man-made forecast after mid-2007
•     Forecast (extrapolation) from mid-2007 until end of 2008
•     How can we better organize/collect data?
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Organization of the Course
Contents:
•  Basics, Mathematical Concepts, Time Series in R
• Descriptive Analysis (Plots, Decomposition, Correlation)
• Models for Stationary Series (AR(p), MA(q), ARMA(p,q))
• Non-Stationary Models (SARIMA, GARCH, Long-Memory)
• Forecasting (Regression, Exponential Smoothing, ARMA)
• Miscellaneous (Multivariate, Spectral Analysis, State Space)

Goal:
The students acquire experience in analyzing time series 
problems, are able to work with the software package R, and 
can perform time series analyses correctly on their own.



Organization of the Course

 more details are given on the
additional organization sheet
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What is a Time Series?
A time series is a set of observations , where
each of the observations was made at a specific time   .

- In contrast to multivariate statistics, the data in a time series
are usually not iid, but are serially correlated.

- We assume that the observations were made at fixed time 
intervals and do not treat continuous or irregular series.

Rationale behind time series analysis:
The rationale in time series analysis is to understand the pattern 
of the dependencies in the past of the series, and exploit them 
to be able to predict the future well.

1( , , )nx x x 
t
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Example 1: Air Passenger Bookings
> data(AirPassengers)
> AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432
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Example 1: Air Passenger Bookings
> plot(AirPassengers, ylab="Pax", main="Pax Bookings")
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Example 2: Lynx Trappings
> data(lynx)
> plot(lynx, ylab="# of Lynx", main="Lynx Trappings")
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Example 3: Luteinizing Hormone
> data(lh)
> plot(lh, ylab="LH level", main="Luteinizing Hormone")
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Example 3: Lagged Scatterplot
> plot(lh[1:47], lh[2:48], pch=20)
> title("Scatterplot of LH Data with Lag 1")
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Example 4: Swiss Market Index
We have a multiple time series object:

> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130) 
End = c(1998, 169) 
Frequency = 260 

DAX    SMI    CAC   FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8
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Example 4: Swiss Market Index
> smi <- ts(tmp, start=start(esm), freq=frequency(esm))
> plot(smi, main="SMI Daily Closing Value")
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Example 4: Swiss Market Index
> lret.smi <- log(smi[2:1860]/smi[1:1859])
> plot(lret.smi, main="SMI Log-Returns")
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Goals in Time Series Analysis
1) Exploratory Analysis

Visualization of the properties of the series
- time series plot
- decomposition into trend/seasonal pattern/random error
- correlogram for understanding the dependency structure

2) Modeling
Fitting a stochastic model to the data that represents and 
reflects the most important properties of the series
- done exploratory or with previous knowledge
- model choice and parameter estimation is crucial
- inference: how well does the model fit the data?
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Goals in Time Series Analysis
3) Forecasting

Prediction of future observations with measure of uncertainty
- mostly model based, uses dependency and past data
- is an extrapolation, thus often to take with a grain of salt
- similar to driving a car by looking in the rear window mirror

4) Process Control
The output of a (physical) process defines a time series
- a stochastic model is fitted to observed data
- this allows understanding both signal and noise
- it is feasible to monitor normal/abnormal fluctuations
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Goals in Time Series Analysis
5) Time Series Regression

Modeling response time series using 1 or more input series

where       is independent of      and    , but not i.i.d.  

Example: (Ozone)t = (Wind)t + (Temperature)t +

Fitting this model under i.i.d error assumption:
- leads to unbiased estimates, but...
- often grossly wrong standard errors
- thus, confidence intervals and tests are misleading

0 1 2t t t tY u v E     

tE tvtu

tE
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Stochastic Model for Time Series
Def: A time series process is a set                of random

variables, where     is the set of times. Each of the random 
variables has a univariate probability distribution    . 

• If we exclusively consider time series processes with 
equidistant time intervals, we can enumerate

• An observed time series is a realization of                          , 
and is denoted with small letters as                       .

• We have a multivariate distribution, but only 1 observation 
(i.e. 1 realization from this distribution) is available. In order 
to perform “statistics”, we require some additional structure.

 ,tX t


,tX t tF

 1,2,3,...T 

 1, , nX X X 
1( , , )nx x x 
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Stationarity
For being able to do statistics with time series, we require that the 
series “doesn’t change its probabilistic character” over time. This is 
mathematically formulated by strict stationarity.

Def: A time series                  is strictly stationary, if the joint 
distribution of the random vector                       is equal to 
the one of                        for all combinations of and .

 all     are identically distributed
all     have identical expected value
all have identical variance
autocovariance depends only on lag 

 ,tX t
( , , )t t kX X 

( , , )s s kX X 

tX
tX
tX

h

~tX F
[ ]tE X 

2( )tVar X 
( , )t t h hCov X X  

,t s k
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Stationarity
It is impossible to „prove“ the theoretical concept of stationarity 
from data. We can only search for evidence in favor or against it.

However, with strict stationarity, even finding evidence only is too
difficult. We thus resort to the concept of weak stationarity.

Def: A time series is said to be weakly stationary, if

for all lags

and thus also:

Note that weak stationarity is sufficient for „practical purposes“.

 ,tX t

[ ]tE X 
( , )t t h hCov X X   h

2( )tVar X 
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Testing Stationarity
• In time series analysis, we need to verify whether the series 

has arisen from a stationary process or not. Be careful: 
stationarity is a property of the process, and not of the data.

• Treat stationarity as a hypothesis! We may be able to reject it 
when the data strongly speak against it. However, we can 
never prove stationarity with data. At best, it is plausible. 

• Formal tests for stationarity do exist ( see script). We 
discourage their use due to their low power for detecting 
general non-stationarity, as well as their complexity.

Use the time series plot for deciding on stationarity!
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Evidence for Non-Stationarity
• Trend, i.e. non-constant expected value

• Seasonality, i.e. deterministic, periodical oscillations

• Non-constant variance, i.e. multiplicative error

• Non-constant dependency structure

Remark:

Note that some periodical oscillations, as for example in the 
lynx trappings data, can be stochastic and thus, the underlying 
process is assumed to be stationary. However, the boundary 
between the two is fuzzy.
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Strategies for Detecting Non-Stationarity
1) Time series plot

- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure
- non-constant variance

2) Correlogram (presented later...)
- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure

A (sometimes) useful trick, especially when working with the 
correlogram, is to split up the series in two or more parts, and 
producing plots for each of the pieces separately.
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Example: Simulated Time Series 1
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Example: Simulated Time Series 2

Simulated Time Series Example

Time

ts
.s

im

0 100 200 300 400

-1
0

-5
0

5
10



29Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Mathematical Concepts

Example: Simulated Time Series 3
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Example: Simulated Time Series 4
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Time Series in R
• In R, there are objects, which are organized in a large 

number of classes. These classes e.g. include vectors, 
data frames, model output, functions, and many more. Not 
surprisingly, there are also several classes for time series. 

• We focus on ts, the basic class for regularly spaced time 
series in R. This class is comparably simple, as it can only 
represent time series with fixed interval records, and only 
uses numeric time stamps, i.e. enumerates the index set.

• For defining a ts object, we have to supply the data, but 
also the starting time (as argument start), and the frequency
of measurements as argument frequency.
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Time Series in R: Example
Data: number of days per year with traffic holdups in front of
the Gotthard road tunnel north entrance in Switzerland. 

> rawdat <- c(88, 76, 112, 109, 91, 98, 139, 150, 168, 149)
> ts.dat <- ts(rawdat, start=2004, freq=1)

> ts.dat
Time Series: Start = 2004 
End = 2013; Frequency = 1 
[1]  88  76 112 109  91  98 139 150 168 149

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

88 76 112 109 91 98 139 150 168 149
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Time Series in R: Example
> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")
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Further Topics in R
The scriptum discusses some further topics which are of 
interest when doing time series analysis in R:

• Handling of dates and times in R

• Reading/Importing data into R

 Please thoroughly read and study these chapters. 
Examples will be shown/discussed in the exercises.
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Descriptive Analysis
As always, when working with data, it is important to first gain 
an overview. In time series analysis, the following is required:

• Understanding the context of the data and the data source
• Making suitable plots, looking for structure and outliers
• Thinking about transformations, e.g. to reduce skewness
• Judging stationarity and achieve it by decomposition
• For stationary series, the analysis of autocorrelations
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Visualization: Time Series Plot
> plot(tsd, ylab="(%)", main="Unemployment in Maine")

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6



37Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Descriptive Analysis

Do’s and Dont’s with Time Series Plots
• For easier reading, the data points are always joined by

lines. This is despite the data are discrete, not continuous!

• An exception to this rule is made when data are missing. 
Then, the data points shall not be joined by lines.

• Choosing the correct aspect ratio for a time series plot
is an art. As a rule of the thumb, use the paradigm of 
“banking to 45 degrees”.

• For time series with very many observations, it may be 
required to split them up to several frames. One can for 
example use longtsPlot() from library(IDPmisc)
or other R functions.
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Only One or Multiple Frames?
• Due to different scale/units it is often impossible to directly

plot multiple time series in one single frame. Also, multiple 
frames are convenient for visualizing the series.

• If the relative development of multiple series is of interest, 
then we can (manually) index the series and (manually)
plot them into one single frame.

• This clearly shows the magnitudes for both the trend and
the seasonality. However, the original units are lost.

• For details on how indexing is done, see the script. One 
basically needs to divide every observation by the first.
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Multiple Time Series Plots
> plot(tsd.ind, plot.type="single", col=2:4, …)
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Transformations
For strictly stationary time series, we have:

We did not specify the distribution     and there is no restriction 
to it. However, many popular time series models are based on:

1) Gaussian distribution
2) linear relations between the variables 

If the data show different behaviour, we can often improve the 
situation by transforming             to                      . The most 
popular and practically relevant transformation is:

~tX F

F

1,..., nx x 1( ),..., ( )ng x g x

( ) log( )g   
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When to Apply the Log-Transformation?
As we argued above, a log-transformation of the data often
facilitates estimation, fitting and interpretation. When is it
indicated to log-transform the data?

• If the time series is on a scale which is left closed (with
value 0) and right open. 

• If the marginal distribution of the time series (i.e. when
analyzed with a histogram) is right-skewed.

• If the time series is on a relative scale, i.e. where an 
absolute increment changes its meaning with the level of 
the series. 
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Transformations: Lynx Data
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Transformations: Lynx Data
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Transformations: Lynx Data
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Decomposition
Stationarity is key for statistical learning, but real data often 
have trend/seasonality, and are non-stationary. We can (often) 
deal with that using the simple additive decomposition model: 

= trend + seasonal effect + stationary remainder

The goal is to find a remainder term     , as a sequence of 
correlated random variables with mean zero, i.e. a stationary ts.

We can employ: 1) taking differences (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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t t t tX m s R  

tR



Multiplicative Decomposition
is not always a good model: 
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t t t tX m s R  
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Multiplicative Decomposition
Better:                       , respectively
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t t t tX m s R   log( )t t t tX m s R    
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Differencing: Removing a Trend
We assume a series with an additive trend, but no seasonal
variation. We can write:                    . If we perfom differencing
and assume a slowly-varying trend with , we obtain:

• Note that are the observation-to-observation changes in
the series, but no longer the observations or the remainder.

• This may (or may not) remove trend/seasonality, but does not 
yield estimates for and , and not even for . 

• For a slow, curvy trend, the mean is zero: 

tm ts tR

1t tm m 
t t tX m R 

1 1t t t t tY X X R R    

tY

[ ] 0tE Y 
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Peculuarities in Differencing
In the (practically rare) case where a series with a perfect linear 
trend is differenced, the trend will be reduced to an 
additive constant:

It is important to know that differencing creates artificial new
dependencies that are different from the original ones. For
illustration, consider a stochastically independent remainder:

1 1 1 2

1 1

( , ) ( , )
( , )

0

t t t t t t

t t

Cov Y Y Cov R R R R
Cov R R

   

 

  
 


tm t  

1 1t t t t tY X X R R     
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Differencing: Example

tm ts tR
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Differencing: Example
> plot(diff(SwissTraffic), main=…)
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Differencing: Further Remarks
• If log-transformed series are difference (i.e. the SMI series),

we are considering (an approximation to) the relative changes:

• The backshift operator “go back 1 step” allows for
convenient notation with all differencing operations: 

Backshift operator:

Differencing:

1 1
1

1 1 1

log( ) log( ) log log 1t t t t t
t t t

t t t

X X X X XY X X
X X X

 


  

    
        

   

1( )t tB X X 

1(1 )t t t tY B X X X    
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Differencing Series with Transformation
SMI Daily Closing Value
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Differencing Series with Transformation
SMI Log-Returns
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Higher-Order Differencing
The “normal” differencing from above managed to remove any 
linear trend from the data. In case of polynomial trend, that is no 
longer true. But we can take higher-order differences:

A quadratic trend can be removed by taking second-order 
differences. However, what we obtain is not an estimate of the 
remainder term     , but something that is much more complicated. 

2
1 2

2

1 1 2

1 2 2

,
(1 )
( ) ( )

2 2

t t t

t t

t t t t

t t t

X t t R R stationary
Y B X

X X X X
R R R

  


  

 

   
 
   
   

tR



57Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Descriptive Analysis

Removing Seasonal Effects
Time series with seasonal effects can be made stationary through
differencing by comparing to the previous periods’ value.

•   Here,      is the frequency of the series.

• A potential trend which is exactly linear will be removed by the
above form of seasonal differencing.

• In practice, trends are rarely linear but slowly varying:
However, here we compare      with        , which means that 
seasonal differencing often fails to remove trends completely. 

(1 )p
t t t t pY B X X X    

p

1t tm m 
tm t pm 
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Seasonal Differencing: Example
> data(co2); plot(co2, main=…)
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Seasonal Differencing: Example
> sd.co2 <- diff(co2, lag=12)

Differenced Mauna Loa Data (p=12)
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Seasonal Differencing: Example
This is:

Twice Differenced Mauna Loa Data (p=12, p=1)

Time

d1
.s

d.
co

2

1960 1970 1980 1990

-1
.0

-0
.5

0.
0

0.
5

1.
0

12(1 ) (1 )(1 )t t tZ B Y B B X    
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Differencing: Summary
Some advantages and disadvantages:

+ trend and seasonal effect can be removed

+ procedure is very quick and very simple to implement

- ,     and are not known, and cannot be visualised

- resulting time series will be shorter than the original

- differencing leads to strong artificial dependencies

- extrapolation of     ,    is not easily possible

ˆ tm t̂s ˆ
tR

ˆ tm t̂s
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary
time series can be determined by applying any additive, linear 
filter. We obtain a new time series , representing the trend:

- the window, defined by and , can or can‘t be symmetric.
- the weights, given by , can or can‘t be uniformly distributed.
- most popular is to rely on           and .        
- other smoothing procedures can be applied, too.
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Trend Estimation with the Running Mean
> trd <- filter(SwissTraffic, filter=c(1,1,1)/3)

Time

In
de

x 
Va

lu
e

1990 1995 2000 2005 2010

10
0

11
0

12
0

13
0

Swiss Traffic Index with Running Mean

One observation is lost at
each end of the series!
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Estimated Stochastic Remainder Term
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Filtering and Differencing: Not the Same!
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Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect at time    can be obtained by:

By averaging these estimates of the effects for each month, we
obtain a single estimate of the effect for each month.

6 5 5 6
1 1 1ˆ 7,..., 6

12 2 2t t t t tm X X X X for t n   
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Trend Estimation for Mauna Loa Data
> wghts <- c(.5,rep(1,11),.5)/12
> trd <- filter(co2, filter=wghts, sides=2)

Mauna Loa CO2 Concentrations

Time

co
2

1960 1970 1980 1990

32
0

33
0

34
0

35
0

36
0
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Seasonal Effects for Mauna Loa Data
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Estimating the Seasonal Effects
38
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Estimating the Remainder Term
ˆ ˆ ˆt t t tR x m s  

Estimated Stochastic Remainder Term

Time

rm
ai

n.
es

t

1960 1970 1980 1990

-0
.5

0.
0

0.
5
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality after removal of the trend.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will often be close to zero. 
Usually, one centers the seasonal effects to mean zero.

• This procedure is implemented in R with decompose(). 
Note that it only works for seasonal series where at least
two full periods were observed! 

12p 
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Estimating the Remainder Term
> plot(decompose(co2))
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known &  can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of     ,    are not entirely obvious

- seasonal effect is constant over time

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Trend Estimation with Loess
The running mean has some poor properties as a smoother. One
prefers to use the the so-called Loess Smoother instead. For a 
time series with trend, but without seasonality, we recommend:

> fit   <- loess(SwissTraffic~time(SwissTraffic))
> trend <- predict(fit)

Main advantages:

•    the smoother has nicer theoretical properties.
•    the algorithm is far more robust against outliers.
•    it will also produce trend estimates at the boundaries.
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Trend Estimation with Loess

Time

In
de

x 
V

al
ue

1990 1995 2000 2005 2010

10
0

11
0

12
0

13
0

Swiss Traffic Index with Running Mean
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Smoothing, Filtering: STL-Decomposition
The Seasonal-Trend Decomposition Procedure by Loess

•    is an iterative, non-parametric smoothing algorithm
•    yields a simultaneous estimation of trend and seasonal effect
 similar to what was presented above, but more robust!

+ very simple to apply
+ very illustrative and quick
+ seasonal effect can be constant or smoothly varying
- model free, extrapolation and forecasting is difficult

 Good method for „having a quick look at the data“
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STL-Decomposition for Periodic Series
> co2.stl <- stl(co2, s.window="periodic")

> plot(co2.stl, main="STL-Decomposition of CO2 Data")
STL-Decomposition of CO2 Data
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Using the stl() Function in R

We need to supply argument x (i.e. the data) and s.window
(for seasonal smoothing), either by setting it to "periodic" or 
to a numerical value. We can adjust t.window to a numerical 
value for altering the trend smoothing. Leave the rest alone!
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Idea for Evolving Seasonality
March & August observation after trend removal are as follows:
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STL for Series with Evolving Seasonality
> lap.stl <- stl(lap, s.window=13) 
> plot(lap.stl, main="STL for Air Pax Bookings")

STL for Air Pax Bookings
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Monthplot, s.window="periodic"
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window="periodic"))

Constant Seasonality:

Check the STL plot on
the previous slide for
assessing whether this
is reasonable or not!
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=5))

Evolving Seasonality:

Too little smoothing in
the seasonal effect, the
changes are irregular. 
As a remedy, increase
parameter s.window
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=13))

Evolving Seasonality:

Adequate amount of
smoothing will well
chosen s.window



STL Decomposition with Time Varying Seasonal Effect
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STL for Series with Evolving Seasonality
> plot(stl(lap, s.window=13))
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STL Decomposition: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known & can be visualised

+ resulting time series has the same length as original

+  relatively complicated, but good R implementation

+ stl() even allows for evolving seasonality

+ good estimators, robust against outliers

- extrapolation of     ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Parametric Modelling
When to use?

 Parametric modelling can be used if we have previous 
knowledge about the trend and/or seasonality following
a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing. But it can be treacherous!

 It can also be useful if we have a specific model in mind
and want to infer it. Typical example: testing whether a 
linear trend exists. Caution: beware of correlated errors!
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Parametric Modelling: Example
Maine unemployment data: Jan/1996 – Aug/2006

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6
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Modeling the Unemployment Data
Most often, time series are parametrically decomposed by using
regression models. For the trend, polynomial functions are widely
used, whereas the seasonal effect is modelled with dummy
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!

2 3 4
0 1 2 3 4 ( )t i t tX t t t t E               
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Polynomial Order / OLS Fitting
Estimation of the coefficients will be done in a regression con-
text. We can use the ordinary least squares algorithm, but: 

•   we have violated assumptions,      is not uncorrelated
•   the estimated coefficients are still unbiased
•   standard errors (tests, CIs) can be wrong

Which polynomial order is required?

Eyeballing allows to determine the minimum grade that is 
required for the polynomial. It is at least the number of 
maxima the hypothesized trend has, plus one.

tE
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Important Hints for Fitting
• The main predictor used in polynomial parametric modeling

is the time of the observations. It can be obtained by typing
xx <- as.numeric(time(maine)).  

• For avoiding numerical and collinearity problems, it is key
to center the time/predictors: xc <- xx-mean(xx). 

• R by default sets the first factor level value to 0, seasonality
is thus expressed as the surplus to the January value.

• For visualization: when the trend must fit the data, we have
to adjust, because the mean for the seasonal effect is
usually different from zero!
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Trend of O(4), O(5) and O(6)
Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

O(4)
O(5)
O(6)
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Residual Analysis: O(4)
Residuals vs. Time, O(4)

Time

1996 1998 2000 2002 2004 2006
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Residual Analysis: O(5)
Residuals vs. Time, O(5)

Time
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Residual Analysis: O(6)
Residuals vs. Time, O(6)

Time
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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ functional trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of     ,    easy, but maybe treacherous!

- evolving seasonality possible, but rather difficult

ˆ tm t̂s

ˆ tm t̂s
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Where are we?
For most of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose
into deterministic trend/season and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

[ ]tE X 
2( )tVar X 

( , )t t h hCov X X  
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Autocorrelation
The aim of this section is to estimate, explore and understand
the dependency structure within a stationary time series.

Def: Autocorrelation

Autocorrelation is a dimensionless measure for the strength of the
linear association between the random variables         and . 

There are 2 estimators, i.e. the lagged sample and the plug-in.
 see slides & blackboard for a sketch of the two approaches…

( , )( , ) ( )
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Practical Interpretation of Autocorrelation
We e.g. assume

 The square of the autocorrelation, i.e.                     ,
is the percentage of variability explained by the linear 
association between      and its predecessor        . 

 Thus, in our example,        accounts for roughly 49%
of the variability observed in random variable     . Only 
roughly because the world is seldom exactly linear.

 From this we can also conclude that any                   is 
not a strong association, i.e. has a small effect on the 
next observation only. 

( ) 0.7k 
2( ) 0.49k 

tX t kX 

( ) 0.4k 

t kX 

tX
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Example: Wave Tank Data

Time
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Lagged Scatterplot Approach
Generate a plot of               for all                      and compute the
canonical Pearson correlation coefficient from these data pairs.

> lag.plot(wave, do.lines=FALSE, pch=20)

> title("Lagged Scatter, k=1, cor=0.47")

> 

( , )t t kx x  1,...,t n k 
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Lagged Scatterplot for Higher Lags
Situation for lags
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Plug-In Estimation
For obtaining an estimate of         , determine the sample 
covariance at lag     and divide by the sample variance.

where

This is the standard approach for computing autocorrelations in 
time series analysis. It is better than the lagged scatterplot idea.
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Comparison: Lagged Scatterplot vs. Plug-In
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Comparison: Lagged Scatterplot vs. Plug-In

0 10 20 30 40 50 60

-1
.0

-0
.5

0.
0

0.
5

1.
0

Index

la
gc

or
r

Lagged Scatterplot
Plug-In

ACF Estimation: Lagged Scatterplot vs. Plug-In



103Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Autocorrelation

What is important about ACF estimation?
- Correlations measure linear association and usually fail if

there are non-linear associations between the variables.

- The bigger the lag     for which is estimated, the fewer
data pairs remain. Hence the higher the lag, the bigger the
variability in         .

- To avoid spurious autocorrelation, the plug-in approach
shrinks for large     towards zero. This creates a bias, 
but pays off in terms of mean squared error.  

- Autocorrelations are only computed and inspected for lags
up to , where they have less bias/variance

k ( )k

ˆ ( )k

ˆ ( )k k

1010 log ( )n
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Correlogram
> acf(wave, plot=FALSE)
Autocorrelations of series ‘wave’, by lag

0      1      2      3      4      5      6      7
1.000  0.470 -0.263 -0.499 -0.379 -0.215 -0.038 0.178

8      9     10     11     12     13     14     15
0.269  0.130 -0.074 -0.079 0.029  0.070  0.063 -0.010

16      17     18     19     20     21     22     23
-0.102 -0.125 -0.109 -0.048 0.077  0.165  0.124  0.049

24     25
-0.005 -0.066

As always, numerical values are precise, but provide little
overview over the characteristics of the data…
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Correlogram
> acf(wave, ylim=c(-1,1))
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Alternative:
> library(forecast)
> Acf(wave)
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Confidence Bands
• Even for an iid series without autocorrelation, i.e.                 

for all   , the estimates will be different from zero:

• Question: which are significantly different from zero?

Mathematics:

Asymptotic result:                             for "large"     in iid series.

Under the null hypothesis of an iid series, a 95% acceptance
region for the null is given by the interval .

 For any stationary series,         within the confidence bands are
considered to be different from 0 only by chance, while those
outside are considered to be truly different from zero. 

ˆ ( )k
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Confidence Bands
Type I Errors:

For iid series, we need to
expect 5% of type I errors, 
i.e.         that go beyond the
confidence bands by chance.

Non iid Series:

The confidence bands are
asymptotic for iid series. Real 
finite length non-iid series have
different (unknown) properties. 0 5 10 15 20 25 30
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Ljung-Box Test
The Ljung-Box approach tests the null hypothesis that a number 
of autocorrelation coefficients are simultaneously equal to zero. 
Thus, it tests for significant autocorrelation in a series. The test 
statistic is:

In R:

> Box.test(wave, lag=10, type="Ljung-Box")
Box-Ljung test
data: wave 
X-squared = 344.0155, df = 10, p-value < 2.2e-16

2
2
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ACF of Non-Stationary Series
Autocorrelation is meaningful for stationary series only!!!
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ACF of Non-Stationary Series
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ACF of Non-Stationary Series

Seasonality
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ACF of Non-Stationary Series

Trend & Seasonality
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The ACF and Outliers
Outliers in a time series may strongly affect the ACF estimation!

Beaver Body Temperature
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The ACF and Outliers
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The ACF and Outliers
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The ACF and Outliers
The estimates are sensitive to outliers. They can be
diagnosed using the lagged scatterplot, where every single
outlier appears twice.

Some basic strategies for dealing with outliers:

- if it is bad data point: delete the observation
- most (if not all) R functions can deal with missing data
- if complete data are required, replace missing values with:

a) global mean of the series
b) local mean of the series, e.g. +/- 3 observations
c) fit a time series model and predict the missing value

ˆ ( )k
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Properties of ACF Estimates
a) Appearance of the series   =>   Appearance of the ACF

Appearance of the series   <=   Appearance of the ACF

b) The compensation issue

All estimable autocorrelation coefficients sum up to -1/2. 

c) For large lags    , there are only few data pairs for estimating
. This leads to higher variability and hence the plug-in

estimates are shrunken towards zero.

We run some simulation studies for further insight.
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Theoretical vs. Estimated ACF
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Properties of ACF Estimates
We run a simulation study for showing the distribution of         .
The procedure is as follows:

A) For an AR(1)-process, we know the theoretical ACF

B) Repeat for 
Simulate a length   AR(1)-process
Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates
Do so for different lags   and different series length   .
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Properties of ACF Estimates

Variation in ACF(1) estimation
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Properties of ACF Estimates

Variation in ACF(2) estimation
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Properties of ACF Estimates

Variation in ACF(5) estimation
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Properties of ACF Estimates

Variation in ACF(10) estimation
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Properties of ACF Estimates: Summary
• In short series, the are strongly biased. The consistency 

kicks in and kills the bias only after ~100 observations.

• The variability in the estimation of           is considerable. We 
observe that we need at least 50, or better, 100 observations.

• For higher lags , the bias seems a little less problematic, but 
the variability remains large even with many observations   .

• The confidence bounds, derived under independence, do not 
seem very accurate for (dependent) finite length time series.

• Interpreting the ACF is tricky business! But there is no other 
alternative for inferring the serial correlation in a time series.
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Application: Variance of the Arithmetic Mean
Practical problem: we need to estimate the mean of a realized/ 
observed time series. We would like to attach a standard error.

• If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed. 

• This leads to misinterpretation of tests and confidence
intervals and therefore needs to be corrected.

• The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.

 For the derivation, see the blackboard…
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Confidence Interval for Time Series Mean
An approximate 95% confidence interval for the mean of a time 
series that features autocorrelation is given by:

Note that it is usually not a good idea to plug-in all estimable 
autocorrelations, but to limit the contribution to the default max
lag that is used in R:                   .

Another alternative that will only be presented later is to fit a time 
series model and obtain a CI for the time series mean from it.
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Computation of CI for Time Series Mean
Under (falsely) assuming iid properties of the observations:

> mean(b)+c(-1.96,1.96)*sd(b)/sqrt(length(b))
[1] 36.827 36.898

When adjusting for the sequential correlation of the observations, 
the confidence interval becomes around 2.7x longer, which can 
make a big difference!

> n      <- length(b)
> var.ts <- 1/n^2*acf(b,lag=0,type="cov")$acf[1]*

(n+2*sum(((n-1):(n-10))*acf(b,10)$acf[-1]))
> mean(b) + c(-1.96,1.96)*sqrt(var.ts)
[1] 36.765 36.959
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Partial Autocorrelation Function (PACF)
The  partial autocorrelation is defined as the correlation
between and , given all the values in between.

Interpretation:

• Given a time series    , the partial autocorrelation of lag , 
is the autocorrelation between      and         with the linear 
dependence of        through to removed.

• One can draw an analogy to regression. The ACF measu-
res the „simple“ dependence between and , whereas
the PACF measures that dependence in a „multiple“ fashion.
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Facts About the PACF and Estimation
We have:

•

• for AR(1) models, we have , because
, i.e. there is no conditional relation

between

• For estimating the PACF, we utilize the fact that for any
AR(p) model, we have:               and for all          . 
Thus, for finding , we fit an AR(p) model to the series
for various orders p and set              .  
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PACF of Wave Tank Data
> pacf(wave, ylim=c(-1,1), main="PACF of …")
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Plotting the Series, ACF & PACF
> library(forecast); tsdisplay(wave, points=F)
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Basics of Modeling

(Time Series) Model  Data

Data       (Time Series) Model

We will first discuss the theoretical properties of the most
important time series processes and then mainly focus
on how to successfully fit models to data.

Simulation & Generation

Estimation, Inference & Residual Analysis
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A Simple Model: White Noise
A time series is a White Noise series if the
random variables                are independent and identically
distributed with mean zero.

This implies that all       have the same variance , and

for all          . 

Thus, there is no autocorrelation either:             for all          .  

If in addition, the variables also follow a Gaussian distribution,
i.e.                       , the series is called Gaussian White Noise. 
The term White Noise is due to the analogy to white light.
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Example: Gaussian White Noise
> plot(ts(rnorm(200, mean=0, sd=1)))
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Example: Gaussian White Noise
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Estimating the Conditional Mean
 see blackboard…
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Time Series Modeling
There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- …

We start by discussing autoregressive models. They are
perhaps the simplest and most intuitive time series models
that exist.
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Basic Idea for AR(p)-Models
In an AR(p) process, the random variable       depends on an
autoregressive linear combination of the preceding ,
plus a „completely independent“ term called innovation .  

Here, p is called the order of the AR model. Hence, we abbreviate
by AR(p). An alternative notation is with the backshift operator : 

or short, 

Here,           is called the characteristic polynomial of the AR(p).
It determines most of the relevant properties of the process.
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AR(1)-Model
The simplest autoregressive model is the AR(1) process:

where

is iid with and
We also require that is independent of

Under these conditions,      is a causal White Noise process,
or an innovation. Be aware that this is stronger than the iid
requirement: not every iid process is an innovation and that
property is absolutely central to AR(p)-modelling.
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AR(p)-Models and Stationarity
The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any 
potential trends and/or seasonal effects need to be removed first. 
We will also make sure that the  processes are stationary.

Under which circumstances is an AR(p) stationary?

 see blackboard…
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Stationarity of AR(p)-Processes
As we have seen, any stationary AR(p) process meets:

1)                        

2) The condition on                  :

All (complex) roots of the characteristic polynom

must exceed 1 in absolut value (verifiable with polyroot())

We can always shift a stationary AR(p) process:
The resulting process is still stationary and allows for greater
flexibility in modelling. It is a shifted AR(p) process.
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A Non-Stationary AR(2)-Process
is not stationary… 1 2

1 1
2 2t t t tX X X E   

Non-Stationary AR(2)
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Simulated AR(1)-Series
AR(1) with 1=0.8
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Simulated AR(1)-Series
AR(1) with 1=-0.8
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Autocorrelation of AR(p) Processes
 See the blackboard…

Yule-Walker Equations

We observe that there exists a linear equation system built up from 
the AR(p)-coefficients and the ACF-coefficients of up to lag    . 
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients

p
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AR(3): Simulation and Properties
> xx <- arima.sim(list(ar=c(0.4, -0.2, 0.3))) 
n=200) AR(3) with 1=-0.4, 2=-0.2, 3=0.3
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=..., pacf=TRUE, ...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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Fitting AR(p)-Models
This involves 3 crucial steps:

1) Model Identification
- is an AR process suitable, and what is ?
- will be based on ACF/PACF-Analysis

2) Parameter Estimation
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed

p
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Model Identification
- AR(p) processes are stationary

- For all AR(p) processes, the ACF decays exponentially
quickly, or is an exponentially damped sinusoid.

- For all AR(p) processes, the PACF is equal to zero for
all lags . The behavior before lag can be arbitrary.

If what we observe is fundamentally different from the above, 
it is unlikely that the series was generated from an AR(p)-process. 
We thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities (bias, 
variability, compensation issue) and is tricky to interpret!!!

k p p
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Model Order for log(lynx)
log(lynx)
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Parameter Estimation for AR(p)
Observed time series are rarely centered. Then, it is inappropriate
to fit a pure AR(p) process. All R routines by default assume the
shifted process . Thus, we face the problem:

The goal is to estimate the global mean , the AR-coefficients
, and some parameters defining the distribution of the

innovation . We usually assume a Gaussian, hence this is .

We will discuss 4 methods for estimating the parameters:

OLS, Burg’s algorithm, Yule-Walker, MLE
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OLS Estimation
If we rethink the previously stated problem:

we recognize a multiple linear regression problem without
intercept on the centered observations. What we need to do is:

1) Estimate and determine

2) Run a regression w/o intercept on      to obtain

3) For , take the residual standard error from the output.

This all works without any time series software, but is a bit
cumbersome to implement. Dedicated procedures exist...

tx

ˆt tx y m 
1

1ˆ n
tt

m y y
n 

  
1ˆ ˆ,..., p 

2ˆE

1 1( ) ( ) ... ( )t t p t p tY m Y m Y m E        



154Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Autoregressive Models

OLS Estimation
> f.ols <- ar.ols(llynx, aic=F, inter=F, order=2)
> f.ols
Coefficients:

1        2  
1.3844  -0.7479

Order selected 2  sigma^2 estimated as 0.2738

> f.ols$x.mean
[1] 6.685933

> sum(na.omit(f.ols$resid)^2)/112
[1] 0.2737594
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Burg‘s Algorithm
While OLS works, the first      instances are never evaluated as
responses. This is cured by Burg’s algorithm, which uses the 
property of time-reversal in stochastic processes. We thus 
evaluate the RSS of forward and backward prediction errors:

In contrast to OLS, there is no explicit solution and numerical 
optimization is required. This is done with a recursive method 
called the Durbin-Levison algorithm (implemented in R).
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Burg’s Algorithm
> f.burg <- ar.burg(llynx, aic=F, order.max=2)
> f.burg
Coefficients:

1        2  
1.3831  -0.7461 

Order selected 2  sigma^2 estimated as  0.2707

> f.ar.burg$x.mean
[1] 6.685933

Note: The innovation variance is estimated from the Durbin-
Levinson updates and not from the residuals using the MLE!
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Yule-Walker Equations
The Yule-Walker-Equations yield a LES that connects the true ACF 
with the true AR-model parameters. We plug-in the estimated ACF 
coefficients:

for 

and can solve the LES to obtain the AR-parameter estimates.

is the arithmetic mean of the time series
is obtained from the fitted coefficients via
the autocovariance of the series and takes
a different value than before!

There is an implementation in R with function ar.yw().
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Yule-Walker Equations
> f.ar.yw

Call: ar.yw.default(x = log(lynx), aic = FALSE, 
order.max = 2)

Coefficients:
1        2  

1.3504  -0.7200  

Order selected 2  sigma^2 estimated as  0.3109

While the Yule-Walker method is asymptotically equivalent to
OLS and Burg’s algorithm, it generally yields a solution with
worse Gaussian likelihood on finite samples
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series , the resulting model is the most 
plausible (i.e. the most likely) one.

This requires the choice of a probability model for the time series. 
By assuming Gaussian innovations,                        , any AR(p) 
process has a multivariate normal distribution:

, with     depending on

MLE then provides simultaneous estimates by optimizing:  
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Maximum-Likelihood-Estimation
> f.ar.mle

Call: arima(x = log(lynx), order = c(2, 0, 0))

Coefficients:
ar1      ar2  intercept

1.3776  -0.7399     6.6863
s.e. 0.0614   0.0612     0.1349

sigma^2=0.271; log likelihood=-88.58; aic=185.15

While MLE by default assumes Gaussian innovations, it still 
performs resonably for other distributions as long as they are
not extremly skewed or have very precarious outliers.
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Practical Aspects
• All 4 estimation methods are asymptotically equivalent and 

even on finite samples, the differences are usually small.

• All 4 estimation methods are non-robust against outliers and
perform best on data that are approximately Gaussian.

• Function arima() provides standard errors for                    
so that statements about significance become feasible and 
confidence intervals for the parameters can be built. 

• ar.ols(), ar.yw() & ar.burg() allow for convenient 
choice of the optimal model order     using the AIC criterion. 
Among these methods, ar.burg() is usually preferred.

p
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AIC-Based Order Choice
> fit.aic <- ar.burg(log(lynx)) 
> plot(0:fit.aic$order.max, fit.aic$aic)
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Comparison: Alpha Estimation vs. Method
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Comparison: Alpha Estimation vs. n
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Comparison: Sigma Estimation vs. n
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Model Diagnostics
What we do here is Residual Analysis:

„residuals“ = „estimated innovations“

= 

=

Remember the assumptions we made:

i.i.d,                 ,
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Plotting the Fit
Logged Lynx Data with AR(2) and AR(11)
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Residual Analysis
We check the assumptions we made with the following plots:

a) Time series plot of

b) ACF/PACF plot of

c) QQ-plot of

 The innovation time series should look like White Noise

Lynx example:
fit <- arima(log(lynx), order=c(2,0,0))

tsdisplay(resid(fit))
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Residual Analysis for AR(2) Model
fit.ar02$resid
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Residual Analysis for AR(11) Model
fit.ar11$resid
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Normal Plots for AR(2) & AR(11)
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Diagnostics by Simulation
As a last check before a model is called appropriate, simulating 
from the estimated coefficients and visually inspecting the 
resulting series (without any prejudices) to the original one
can be beneficial.

 The simulated series should „look like“ the original. 
If this is not the case, the model failed to capture 
(some of) the properties in the original data.

 A larger or more sophisticated model may be necessary
in cases where simulation does not recapture the features
in the original data.
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Diagnostics by Simulation: AR(2)
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Diagnostics by Simulation: AR(11)
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Looking Back & Outlook
We did consider shifted AR(p)-models                     with:

where the correlation structure was as follows:

ACF: „exponential decay“
PACF: = 0 for all lags k>p

Now, in practice we could well observe a time series whose
autocorrelation differs from the above structure. 

We will thus discuss ARMA(p,q) models, a class that is suitable
for modeling a wider spectrum of dependency structures.

1 1 ...t t p t p tX X X E     
t tY m X 
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Moving Average Models
Whereas for AR(p) models, the current observation of a time 
series is written as a linear combination of its own past, MA(q)
models can be seen as an extension of the „pure“ process

,  where is a white noise process,

in the sense that past innovation terms are
included, too. We call this a moving average model:

This is a time series process that is stationary, but not iid. In 
many respects, MA(q) models are complementary to AR(p). 

t tX E tE
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Notation for MA(q)-models
The backshift operator, and the characteristic polynom, allow for 
convenient notation:

MA(q):

MA(q) with BS:

MA(q) with BS+CP:

where

is the characteristic polynom

1 1 2 2 ...t t t t q t qX E E E E        

 2
1 21 ... q

t q tX B B B E      

( )t tX B E 

2
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Stationarity of MA(q)-Models
We first restrict ourselves to the simple MA(1)-model:

,  where is a White Noise innovation.

The series is always weakly stationary, no matter what the
choice of the parameter is. Remember that for proving weak 
stationarity, we have to show that:

- the expected value is constant
- the variance is constant and finite
- the autocovariance only depends on the lag k

 see the blackboard for the proof

1 1t t tX E E   tE

tX
1
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ACF of MA(q)-Processes
We can deduct the ACF for the MA(1)-process:

and

for all k>1.

Thus, we have a “cut-off” situation, i.e. a similar behavior to 
the one of the PACF in an AR(1) process. This is why and 
how AR(1) and MA(1) are complementary.
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Simulation of MA(1)
> ts.ma1 <- arima.sim(list(ma=0.7), n=500)
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Estimated and True ACF of MA(1)
> acf.true  <- ARMAacf(ma=0.7, lag.max=20)
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Estimated and True PACF of MA(1)
> pacf.true <- ARMAacf(ma=0.7, pacf=T, lag.m=20)



183Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Moving Average Models 

MA(1): Invertibility
Without additional assumptions, the ACF of an MA(1) doesn‘t 
allow identification of the generating model.

In particular, the two processes

have identical ACF:
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MA(1): Invertibilty
• An MA(1)-, or in general an MA(q)-process is said to be

invertible if the roots of the characteristic polynomial
exceed one in absolute value.

• Under this condition, there exists only one MA(q)-process
for any given ACF. But please note that any MA(q) is
stationary, no matter if it is invertible or not.

• The condition on the characteristic polynomial translates
to restrictions on the coefficients. For any MA(1)-model,  

is required.

• R function polyroot() can be used for finding the roots. 
1| | 1 

( )B
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Practical Importance of Invertibility
The condition of invertibility is not only a technical issue, but 
has important practical meaning. All invertible MA(q) processes 
can be expressed in terms of an AR(∞), e.g. for an MA(1):

Invertibility is practically relevant for model fitting!
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Fitting MA(q) Models to Data
As with AR(p) models, there are three main steps:

1) Model Identification
Is the series stationary? 
Do the properties of ACF/PACF match?
Derive order     from the cut-off in the ACF

2) Parameter Estimation
How to determine estimates for                         ?
Conditional Sum of Squares or MLE

3) Model Diagnostics
With the same tools/techniques as for AR(p) models

q

2
1, ,..., ,q Em   
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Parameter Estimation for MA(q)
The simplest idea is to exploit the relation between model
parameters and autocorrelation coefficients (“Yule-Walker”)
after the global mean     has been estimated and subtracted:

In contrast to the Yule-Walker method for AR(p) models, this
yields an inefficient estimator that generally generates poor 
results and hence should not be used in practice.

 Use CSS or MLE instead!
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Conditional Sum of Squares
This is based on the fundamental idea of expressing           in
terms of                 and              , as the innovations themselves 
are unobservable.   

This is possible for any invertible MA(q), e.g. the MA(1):

Conditional on the assumption of            , it is possible to 
rewrite           for any MA(1) using                and     .

Numerical optimization is required for finding the optimal 
parameter     , but is available in R function arima() with:

> arima(…, order=c(…), method="CSS")

2 1
1 1 1 2 1 1 1 0... ( )t t
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Maximum-Likelihood Estimation
> arima(…, order=c(…), method="CSS-ML")

This is the default methods in R, which is based on finding 
starting values for MLE using the CSS approach. If assuming 
Gaussian innovations, then:

will follow a Gaussian distribution as well, and we have:

resp.  

Hence it is possible to derive the likelihood function and 
simultaneously estimate the parameters                        .

1 1 ...t t t q t qX E E E     
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Example: Return of an AT&T Bond
Daily Changes in the Return of an AT&T Bond
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Example: Return of an AT&T Bond
Fitting an MA(1) model seems a resonable choice…
> arima(diff(attbond), order=c(0,0,1))

Call:
arima(x = diff(attbond), order = c(0, 0, 1))

Coefficients:
ma1  intercept

-0.2865    -0.0247
s.e.   0.0671     0.0426

sigma^2=0.680, loglikelihood=-234.16, aic=474.3
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Example: Residual Analysis
Residuals of MA(1)
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Example: Residual Analysis

The residuals are distinctly 
long tailed. This provides 
some loss of efficiency in
the MLE estimator.

It might as well give a hint
that the iid property of the
residuals is violated, i.e. 
that there is volatility.
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ARMA(p,q)-Models
An ARMA(p,q)-model combines AR(p) and MA(q):

where      are i.i.d. innovations (=a white noise process). 

It‘s easier to write ARMA(p,q)’s with the characteristic polynomials:

, where

is the cP of the AR-part, and

is the cP of the MA-part

tE
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Properties of ARMA(p,q)-Models
The stationarity is determined by the AR(p)-part of the model:

If the roots of the characteristic polynomial
exceed one in absolute value, the process is stationary.

The invertibility is determined by the MA(q)-part of the model:

If the roots of the characteristic polynomial          
exceed one in absolute value, the process is invertible.

Any stationary and invertible ARMA(p,q) can either be rewritten
in the form of a non-parsimonious              or an             . 
In practice, we mostly consider shifted ARMA(p,q):  

( )B

( )B

( )AR  ( )MA 

t tY m X 
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True ACF/PACF of an ARMA(2,1)
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Estimated ACF/PACF of an ARMA(2,1)
, 1 2 11.2 0.8 0.4t t t t tX X X E E         ~ (0,1)tE N
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Properties of ACF/PACF in ARMA(p,q)
ACF PACF

AR(p) exponential decay cut-off at lag p

MA(q) cut-off at lag q exponential decay

ARMA(p,q) mix decay/cut-off mix decay/cut-off

• In an ARMA(p,q), depending on the coefficients of the model, 
either the AR(p) or the MA(q) part can dominate the ACF/PACF 
characteristics.

• All linear time series processes can be approximated by an 
ARMA(p,q) with possibly large orders        .,p q
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Fitting ARMA(p,q) Models to Data
As with AR(p) or MA(q) models, there are three main steps:

1) Model Identification
Is the series stationary? 
Do the properties of ACF/PACF match?
Derive orders         from cut-offs in ACF and PACF

2) Parameter Estimation
How to determine estimates for                                       ?
Conditional Sum of Squares or MLE

3) Model Diagnostics
With the same tools/techniques as for AR & MA models

,p q

2
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Identification of the Order (p,q)
May be more difficult in reality than in theory:

• We only have one single realization of the time series with 
finite length. The ACF/PACF plots are not „facts“, but are 
estimates with uncertainty. The superimposed cut-offs 
may be difficult to identify from the ACF/PACF plots.

• ARMA(p,q) models are parsimonius, but can usually be 
replaced by high-order pure AR(p) or MA(q) models. This
is not a good idea in practice, however!

• In many cases, an AIC grid search over all ARMA(p,q)
with                may help to identify promising models. 5p q 
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Parameter Estimation for ARMA(p,q): CSS
This is based on the fundamental idea of expressing           in
terms of                 and                               as the innovations 
themselves are unobservable.   

This is possible for any invertible ARMA(p,q). Conditional on 
the assumption of:

it is possible to rewrite            for any invertible ARMA(p,q) 
using                 and                              . Numerical optimization 
is required for finding the optimal parameters, but is available in 
R function arima() with: > arima(…,…,method="CSS")
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Parameter Estimation for ARMA(p,q): MLE
> arima(…, order=c(…), method="CSS-ML")

This is the default methods in R, which is based on finding 
starting values for MLE using the CSS approach. If assuming 
Gaussian innovations, then:

will follow a Gaussian distribution as well, and we have:

resp.  

Hence it is possible to derive the likelihood function and 
simultaneously estimate                                       . 
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MLE: Remarks
• The MLE approach would work for any distribution. However, 

for innovation distributions other than the Gaussian, the joint
distribution might be „difficult“.

• For „reasonable“ deviations from the normality assumption, 
MLE mostly still yields „good“ results. Critical are situations 
with extreme outliers or precarious skewness.

• Besides the parameter estimates, we also obtain their 
standard errors, assessing the precision of the estimates.

• Other software packages than R often do not rely on MLE,
but only use the theoretically less precise CSS approach. 



204Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – ARMA(p,q)

AIC-Based Model Choice
In R, finding the AIC-minimizing ARMA(p,q) model is convenient 
with the use of auto.arima() from library(forecast).

Handle this function with care! It will always identify a 
«best fitting» ARMA(p,q), but there is no guarantee that 
this model provides an adequate fit.

Using auto.arima() should always be complemented by 
visual inspection of the time series for assessing stationarity, 
verifying the ACF/PACF plots for a second thought on suitable 
models. Finally, model diagnostics with the usual residual plots 
will decide whether the model is useful in practice. 
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Example: Sunspot Areas
> tsdisplay(log(sunspotarea), points=FALSE)
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Example: Sunspot Areas
> auto.arima(log(sunspotarea), max.p=10,
max.q=10, stationary=TRUE, seasonal=FALSE,
allowdrift=FALSE)

Series: log(sunspotarea) 
ARIMA(2,0,1) with non-zero mean 
Coefficients:

ar1     ar2      ma1  intercept
1.5001  -0.789  -0.5246     6.2065

s.e.  0.0720   0.061   0.0924     0.0977

sigma^2 = 0.4702, log likelihood = -143.6
AIC=297.2, AICc=297.66, BIC=311.8
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Example: Sunspot Areas
> tsdisplay(resid(fit), points=FALSE)
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Time Series Regression
Idea:

t=2   t=3   t=4
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Time Series Regression
• We speak of time series regression if response and predictors 

are time series, i.e. if they were observed in a sequence.

• In principle, it is perfectly fine to apply the usual OLS setup

Be careful: this assumes that the errors       are uncorrelated.

• With correlated errors, the estimates      are still unbiased, but 
more efficient estimators than OLS exist. The standard errors 
are wrong, often underestimated, causing spurious significance.

• The Generalized Least Squares procedure solves the issue! 
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Example 1: Global Temperature
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Example 1: Global Temperature
Temperature = Linear Trend + Seasonality + Remainder

 Recordings from 1971 to 2005, 

 The remainder term is usually a stationary time series, 
thus it would not be surprising if the regression model
features correlated errors. 

 The applied question which is of importance here is
whether there is a significant trend, and a significant
seasonal variation

2 [ " "] 12 [ " "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY          

420n 
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Example 2: Air Pollution
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Example 2: Air Pollution
Oxidant = Wind + Temperature + Error

 Recordings from 30 consecutive days, 

 The data are from the Los Angeles basin, USA

 The pollutant level is influenced by both wind and
temperature, plus some more, unobserved variables.

 It is well conceivable that there is "day-to-day memory" 
in the pollutant levels, i.e. there are correlated errros.

0 1 1 2 2t t t tY x x E     
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Example 2: Air Pollution
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Time Series Regression Model
The two examples show that time series regression can appear 
when decomposing series parametrically, or when working with 
response/predictors that were recorded sequentially.

 The series                    can be stationary or non-stationary.

 It is crucial that there is no feedback from the response
to the predictor variables               , i.e. we require an input/ 
output system.

 must be stationary and independent of                , but may 
be Non-White-Noise with some serial correlation.
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Finding Correlated Errors
1) Start by fitting an OLS regression and analyze residuals



1970 1975 1980 1985 1990 1995 2000 2005

-0
.2

0.
0

0.
2

0.
4

time(anomalies)

re
si

d(
fit

.lm
)

Residuals of the lm() Function

217Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Time Series Regression

Finding Correlated Errors
2) Continue with a time series plot of OLS residuals
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Finding Correlated Errors
3) Also analyze ACF and PACF of OLS residuals
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Model for Correlated Errors
 It seems as if an AR(2) model provides an adequate

model for the correlation structure observed in the
residuals of the OLS regression model.

> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2

Call: ar.burg.default(x = resid(fit.lm))

Coefficients:
1       2  

0.4945  0.3036  

Order selected 2  sigma^2 estimated as  0.00693

Residuals of this AR(2) model must look like white noise!
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Does the Model Fit?
5) Visualize a time series plot of the AR(2) residuals
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Does the Model Fit?
6) ACF and PACF plots of AR(2) residuals
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Global Temperature: Conclusions
• The residuals from OLS regression are visibly correlated.

• An AR(2) model seems appropriate for this dependency.

• The AR(2) yields a good fit, because its residuals have
White Noise properties. We have thus understood the
dependency of the regression model errros.

We need to account for the correlated errors, else the
coefficient estimates will be unbiased but inefficient, and
the standard errors are wrong, preventing successful
inference for trend and seasonality
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Air Pollution: OLS Residuals
Time series plot: dependence present or not?
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Air Pollution: OLS Residuals
ACF and PACF suggest: there is AR(1) dependence
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Air Pollution Example
> summary(fit.lm)

Call: lm(formula = Oxidant ~ Wind + Temp, data = dat)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -5.20334   11.11810  -0.468    0.644    
Wind        -0.42706    0.08645  -4.940 3.58e-05 ***
Temp         0.52035    0.10813   4.812 5.05e-05 ***
---
Residual standard error: 2.95 on 27 degrees of freedom
Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 
F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09

 Inference results are not valid if residuals are correlated
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Durbin-Watson Test 
• The Durbin-Watson approach is a test for autocorrelated

errors in regression modeling based on the test statistic:

• This is implemented in R: dwtest() in library(lmtest). 
A p-value for the null of no autocorrelation is computed.

• This test does not detect all autocorrelation structures. If the
null is not rejected, the residuals may still be autocorrelated.

Never forget to check ACF/PACF of the residuals!
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Durbin-Watson Test 
Example 1: Global Temperature
> library(lmtest)

> dwtest(fit.lm)

data:  fit.lm

DW = 0.5785, p-value < 2.2e-16

alt. hypothesis: true autocorrelation is greater than 0

Example 2: Air Pollution
> dwtest(fit.lm)

data:  fit.lm

DW = 1.0619, p-value = 0.001675

alt. hypothesis: true autocorrelation is greater than 0
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Cochrane-Orcutt Method
This is a simple, iterative approach for correctly dealing with 
time series regression. We consider the pollutant example:

with

The fundamental trick is using the transformation:

This will lead to a regression problem with iid errors:

See the blackboard for full details. The idea is to run an OLS 
regression first, determine the transformation from the residuals 
and finally obtaining corrected estimates.

0 1 1 2 2t t t tY x x E     

1t t tY Y Y  

2
1 ; ~ (0, )t t t t UE E U U N iid  

0 1 1 2 2t t t tY x x U        
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Generalized Least Squares
 See the blackboard for full explanation

• OLS regression assumes a diagonal error covariance matrix, 
but there is a generalization to .  

• If we find             , the regression model can be rewritten as:

with

• One obtains the generalized least square estimates: 
with

2( )Var E  

1 1 1

* * *

y X E
S y S X S E
y X E
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Generalized Least Squares
For using the GLS approach, i.e. for correcting the dependent
errors, we need an estimate of the error covariance matrix . 

The two major options for obtaining it are:

1) Cochrane-Orcutt (for AR(p) correlation structure only)
iterative approach: i)   ,   ii)    ,   iii) 

2) GLS (Generalized Least Squares, for ARMA(p,q))
simultaneous estimation of and

 Full explanation of the two different approaches
was provided on the blackboard!  
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GLS: Syntax
Package nlme has function gls(). It does only work if the
correlation structure of the errors is provided. This has to be
determined from the residuals of an OLS regression first.

> library(nlme)
> corStruct <- corARMA(form=~time, p=2)
> fit.gls <- gls(temp~time+season, data=dat,

correlation=corStruct)

The output contains the regression coefficients and their
standard errors, as well as the AR-coefficients plus some
further information about the model (Log-Likelihood, AIC, ...).
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GLS: Residual Analysis
The residuals from a GLS must look like coming from a time 
series process with the respective structure:
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GLS/OLS: Comparison of Results
 The trend in the global temperature is significant!

> coef(fit.lm)["time"]
time 

0.01822374 
> confint(fit.lm, "time")

2.5 %    97.5 %
time 0.01702668 0.0194208

> coef(fit.gls)["time"]
time 

0.02017553 
> confint(fit.gls, "time")

2.5 %     97.5 %
time 0.01562994 0.02472112

OLS

GLS
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GLS/OLS: Comparison of Results
 The seasonal effect is not significant!

> drop1(fit.lm, test="F")
temp ~ time + season

Df Sum of Sq RSS     AIC  F value  Pr(F)    
<none>               6.4654 -1727.0                    
time    1   14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11    0.1744  6.6398 -1737.8   0.9982 0.4472

> anova(fit.gls)
Denom. DF: 407 

numDF F-value p-value
(Intercept)     1 78.40801  <.0001
time            1 76.48005  <.0001
season         11  0.64371  0.7912

OLS

GLS
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GLS Example 1: Global Temperature

Time

an
om

al
y

1970 1975 1980 1985 1990 1995 2000 2005

-0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

Global Temperature Anomalies



236Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Time Series Regression

Air Pollution: Results
Both predictors are significant with both approaches...

> confint(fit.lm, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.6044311 -0.2496841
Temp  0.2984794  0.7422260

> confint(fit.gls, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.5447329 -0.2701709
Temp  0.2420436  0.7382426

 But still, it is important to use GLS with correlated errors!

OLS

GLS
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Simulation Study: Model
We want to study the effect of correlated errors on the quality of 
estimates when using the least squares approach:

where       is from an AR(1)-process with                  and            .

We generate 100 realizations from this model and estimate the 
regression coefficient and its standard error by:

1) OLS
2) GLS

/ 50tx t
22t t t ty x x E  

0.65   0.1 tE
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Simulation Study: Series

Response Time Series
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Simulation Study: ACF/PACF of Errors
Error Time Series
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Simulation Study: Results

OLS GLS
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Missing Input Variables
- Correlated errors in (time series) regression problems are often 

caused by the absence of crucial input variables (time series).

- In all these cases, it is much better to identify the not-yet-present 
variables and include them into the regression model.

- However, in practice this isn‘t always possible, because these 
crucial variables may be non-available.

 Time series regression methods for correlated errors such 
as GLS can be seen as a sort of emergency kit for the case 
where the non-present variables cannot be added. If you 
can do without them, even better!
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Example: Ski Sales
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Ski Sales: Residual Diagnostics
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Ski Sales: ACF/PACF of Residuals
Analysis of OLS Residuals

0 10 20 30 40

-4
0

4

2 4 6 8 10 12

-0
.5

0.
0

0.
5

Lag

AC
F

2 4 6 8 10 12

-0
.5

0.
0

0.
5

Lag

PA
C

F



245Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Time Series Regression

Ski Sales: Durbin-Watson-Test
We perform a Durbin-Watson-Test for supporting our impression 
about the correlation of the OLS residuals:

> dwtest(fit)
data:  fit 
DW = 1.9684, p-value = 0.3933
alt. hypothesis: true autocorrelation > 0

The null hypothesis of “no autocorrelation” cannot be rejected in 
this case. This contradicts our findings from ACF/PACF analysis.

This is a case, where the Durbin-Watson-Test fails due to low 
power for situations, where          is small, but autocorrelation of 
significant magnitude exists at other lags. 

(1)
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Ski Sales: Model with Seasonal Factor
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Residuals from Seasonal Factor Model
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Residuals from Seasonal Factor Model
Residuals of Extended Model
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Ski Sales: Summary
• The first model time series regression model (Sales vs. PDI) 

showed strongly correlated residuals, so that all inference 
results are to be considered as invalid.

• The Durbin-Watson test failed to indicate this correlation, as
was very small, but significant autocorrelation at higher

lags exists.

• The correlated residuals are caused by omitting the season of
the observation. Including this into the model cures the problem.

 The emergency kit of GLS is, after careful modeling, not 
even necessary in this example. This is often the case!

(1)
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ARIMA & SARIMA
Why?

Many time series in practice show trends and/or seasonality. 
While we can decompose them and describe the stationary 
part, it might be attractive to directly model them.

Advantages
Forecasting is convenient and AIC-based decisions for the 
presence of trend/seasonality become feasible.

Disadvantage
Lack of transparency for the decomposition and forecasting 
has a bit the flavor of a black-box-method.
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ARIMA(p,d,q)-Models
ARIMA models are aimed at describing series that have a trend 
which can be removed by differencing, and where the differences 
can be described with an ARMA(p,q) model.

Definition: If                                                                    ,
then                                    . In most practical 
cases, using           will be enough! 

Notation: Very compact with the backshift operator       :
is an 

Stationarity: ARIMA processes are non-stationary if           ,
option to rewrite as non-stationary ARMA(p,q).

1 (1 ) ~ ( , )d
t t t tY X X B X ARMA p q   

( )(1 ) ( )d
t tB B X B E   

~ ( , , )tX ARIMA p d q
1d 

()B
( , , )ARIMA p d q

0d 
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Example: Monthly Crude Oil Prices
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Example: Taking the Logarithm is Key
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Example: Differencing for Stationarity
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Example: ACF/PACF of Differenced Series
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Fitting an ARIMA in R
Plausible models for the logged oil prices after inspection of 
ACF/PACF of the differenced series (that seems stationary):

ARIMA(1,1,1) or ARIMA(2,1,1) or ARIMA(1,1,2)
> arima(lop, order=c(1,1,2))
Coefficients:

ar1      ma1      ma2
0.8429  -0.5730  -0.3104

s.e.  0.1548   0.1594   0.0675
sigma^2 = 0.0066:  ll = 261.88,  aic = -515.75

Alternative R command with equivalent result:
> arima(dlop, order=c(1,0,2), include.mean=FALSE)
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Example: Residuals for ARIMA(1,1,2)
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Rewriting ARIMA as Non-Stationary ARMA
Any ARIMA(p,d,q)  model can be rewritten in the form of a non-
stationary ARMA((p+1),q) process. This provides some deeper 
insight, especially for the task of forecasting:

Verification with the polyroot() command in R shows:
> abs(polyroot(c(1,-1.84, 0.84)))
[1] 1.000000 1.190476

 There will always be a unit root!

1 1 2

1 1 2 1 2

1 2 1 2

0.84 0.57 0.31
0.84 ( ) 0.57 0.31
1.84 0.84 0.57 0.31

t t t t t

t t t t t t t

t t t t t t
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X X X X E E E
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Example 2: Douglas Fir Data

Marcel Dettling, Zurich University of Applied Sciences

Douglas Fir Tree Ring Width from 1107-1964
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Example 2: After Differencing

Marcel Dettling, Zurich University of Applied Sciences

Differenced Douglas Fir Tree Ring Width from 1107-1964
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Example 2: Differencing or Not?
Some facts and statements:

• The ACF of the original data shows a relatively slow decay. 
However, the series still fits within what could have been 
produced by a stationary time series process.

• On the other hand, the differenced series looks “much more 
stationary” than the original one. It is also conceivable that
data-generating process is an ARIMA.

• Stationary ARMA modelling would focus more on long term, 
i.e. climatic changes over time. Non-stationary modelling 
focuses more on short-term changes from year to year,
i.e. local effects.
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Example 2: Model Choice Original
• Analysis of ACF/PACF of the original series suggests using a 

ARIMA(2,0,0) or ARIMA(1,0,1) as parsimonius models.

• The residuals of these models look similar. ARIMA(1,0,1) has
the lower AIC-value. According to auto.arima(), the model 
with minimal AIC is an ARIMA(1,0,3) though. That model is 
not suggestive according to ACF/PACF.

> fit <- auto.arima(douglasfir, max.p=5, 
max.q=5, stationary=FALSE, seasonal=FALSE, 
allowdrift=TRUE, allowmean=TRUE, ic="aic")

ARIMA(1,0,3) with non-zero mean 
AIC=8410.22   AICc=8410.32   BIC=8438.75
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Example 2: Model Choice Differenced
• Analysis of ACF/PACF of the differenced series suggests 

using a ARIMA(0,1,1) or ARIMA(1,1,1) as simple models.

• The ARIMA(0,1,1) model cannot capture the dependencies
in a resonable way, the residual are not White Noise. 

• The ARIMA(1,1,1) is much better and produces OK residuals.
Its AIC values is slightly worse than the ARIMA(1,0,1) though.

> fit <- auto.arima(diff(douglasfir), max.p=5, 
max.q=5, stationary=FALSE, seasonal=FALSE, 
allowdrift=TRUE, allowmean=TRUE, ic="aic")

Series: diff(douglasfir) 
ARIMA(1,0,2) with zero mean
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Guidelines for Fitting ARIMA Models
1) If you recognize a non-stationary series with a trend and 

without seasonal effect, choose the appropriate order of 
differencing at lag 1, usually         .

2) Analyze ACF/PACF of the differenced series. If the stylized 
facts of an ARMA process are present, decide for       .

3) Fit the model using the arima() procedure. This is best 
done with the original series as the input and setting    .

4) Analyze the residuals, these must look like White Noise.
If several competing models are appropriate, use AIC for
a second opinion. Function auto.arima() may be handy.   

1d 

,p q

d
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SARIMA(p,d,q)(P,D,Q)s

We have learned that it is also possible to use differencing for 
obtaining a stationary series out of one that features both trend 
and seasonal effect.

1) Removing the seasonal effect by differencing at lag 12

2) Usually, further differencing at lag 1is required to obtain
a series that has constant global mean and is stationary

The stationary series     is then modelled with some special
kind of ARMA(p,q) models, see the forthcoming slides. 

12
12 (1 )t t t tY X X B X   

12
1 1 12 13(1 ) (1 )(1 )t t t t t t t t tZ Y Y B Y B B X X X X X             

tZ
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SARIMA(p,d,q)(P,D,Q)s

= a.k.a. Airline Model. We are looking at the log-trsf. airline data 
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Seasonal Differencing Helps…
or at the log-transformed Australian Beer Production 
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… But More Is Needed!
or at the log-transformed Australian Beer Production 
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Analysis of ACF & PACF
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Stylized Facts in ACF & PACF
Twice differenced data show typical behavior in ACF/PACF: 
there is usually some significant short term dependence over 
the first couple of lags, as well as significant autocorrelation at 
multiples of the period   .

• This suggests that large        are required for describing the 
data with ARMA models, making them non-parsimonius.

• We may overcome this problem by using the airline model

This is an MA(13) where most coefficients are zero.

s

,p q
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SARIMA(p,d,q)(P,D,Q)s

The airline model from the previous slide 
is a                                  for the logged air passenger data     .

Definition: A series      follows a                                      process 
if the following equation holds.

Here, series     originated from      after appropriate 
seasonal and trend differencing: 

In most practical cases, using differencing order               will be 
sufficient. Choosing of                  happens via ACF/PACF or via 
AIC-based decisions. 

12
1 1(1 )(1 )t tZ B B E   
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Fit & Residuals from the Airline Model
> fit <- arima(lap, order=c(0,1,1), seasonal=c(0,1,1))
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Using auto.arima() for Model Selection
The results is a                                  …
> fit <- auto.arima(lap, ic = "aic"); fit

Series: lap
ARIMA(0,1,1)(2,1,2)[12]                    

Coefficients:
ma1     sar1     sar2     sma1     sma2

-0.3632  -0.4852  -0.0933  -0.0204  -0.1803
s.e. 0.0949   0.1561   0.1107   0.1700   0.1117

sigma^2 = 0.001258; log likelihood = 251.52
AIC=-409.06   AICc=-408.39   BIC=-391.81

12(0,1,1)(2,1,2)SARIMA
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Residuals from auto.arima() Fit
Residuals from SARIMA(0,1,1)(2,1,2)
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Outlook: Forecasting with SARIMA
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Guidelines for Fitting SARIMA Models
1) Perform seasonal differencing of the data. The lag     is 

determined by the period. Order           is mostly enough. 

2) Decide if additional differencing at lag 1 is required for 
stationarity. If not, then          . If yes, then try         .  

3) Analyze ACF/PACF of      to determine        for the short
term and          at multiple-of-the-period dependency.  

4) Fit the model using arima() by setting order=c(p,d,q)
and seasonal=c(P,D,Q) accordingly to your choices.

5) Check the accuracy of the model by residual analysis. 
The residuals must look like White Noise and +/- Gaussian.
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Outlook to Non-Linear Models
What are linear models?

Models which can be written as a linear combination of .
This includes all invertible AR-, MA- and ARMA-models.

What are non-linear models?
Everything else, e.g. non-linear combinations of , 
terms like in the linear combination, and much more!  

Motivation for non-linear models?
- cyclic behavior with quicker increase then decrease
- volatility models with conditional heteroskedasticity

We here only present a brief outlook to volatility models.

tX

tX
2
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Volatility Models: Example & Motivation
SMI Log-Returns
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Example: Stylized Facts
Many real-world time series, especially the log-returns of financial 
series exhibit a phenomenon called conditional heterskedasticity.

- periods of higher and lower volatility
- long-tailed appearance in the Normal Plot
- no significant autocorrelation in the series
- significant autocorrelation if the series is squared

Despite not showing direct autocorrelation, these series are not 
White Noise. There is dependency which can be exploited by 
using conditional heteroskedasticity (ARCH/GARCH) models.

Note: Time series with conditional heteroskedasticity can be 
stationary, i.e. ARCH/GARCH models are stationary.
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ARCH/GARCH Models
The basic assumption for ARCH/GARCH models is as follows:

, where                and      is White Noise  

Here, both the conditional mean and variance are non-trivial

and

and can be modelled using a mixture of ARMA & GARCH.

For simplicity, we here assume that both the conditional and
the global mean are zero                  and consider pure ARCH 
processes only where: 

with 

t t tX E  t t tE W tW

1 2[ | , ,...]t t t tE X X X   1 2[ | , ,...]t t t tVar X X X  

0t  

t t tX W 2 2 2
1 2( , ,..., )t t t t pf X X X   
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Definition of the ARCH(p) Model
A time series      is autoregressive conditional heteroskedastic
of order    , abbreviated ARCH(p), if:

with                              .

It is obvious that an ARCH(p) process shows volatility, as:

We can determine the order of an ARCH(p) process in practice
by analyzing ACF and PACF of the squared time series data.
We then again search for an exponential decay in the ACF
and a cut-off in the PACF.

t t tX W 2
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t p t i
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Model Order for SMI Log-Returns
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Fitting an ARCH(2) Model in R
The simplest option for fitting an ARCH(p) in R is to use function 
garch() from library(tseries). Be careful, because the 
order=c(q,p) argument differs from most of the literature.

> fit <- garch(lret.smi, order = c(0,2)) 
> fit

Call: garch(x = lret.smi, order = c(0, 2))

Coefficient(s):
a0         a1         a2  

6.568e-05  1.309e-01  1.074e-01

We recommend to run residual analysis afterwards.
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Showing the ARCH(2) Fit
SMI Log-Returns
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Residual Analysis for the ARCH(2)
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Forecasting with Time Series
Goal: Point predictions for future observations with a measure

of uncertainty, i.e. a 95% prediction interval.

Note: - will be based on a stochastic model
- builds on the dependency structure and past data
- is an extrapolation, thus to take with a grain of salt
- similar to driving a car by using the rear window mirror
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Forecasting: Notation
Past                                    Future

|      |      |    …                |      |      |      |    …          |

Observed Values                    Forecasted Data

Numbers                         Random Variables             

 1 1:, , n nx x X  1,1: ,1:
ˆ ˆ, ,n n n k nX X 

1x 2x 3x 1nx  nx 1nX  2nX  n kX 
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Sources of Uncertainty in Forecasting
There are 4 principal sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the ARMA(p,q)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters              ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!

1,..., p  2
E m

tE
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How to Forecast?
Probabilistic principle for deriving point forecasts:

 The point forecast will be based on the conditional mean.

Probabilistic principle for deriving prediction intervals:

 An (approximate) 95% prediction interval will be obtained via:

 ;1: 1
ˆ | ,...,n k n n k nX E X X X 

 
;1:

2
ˆ 1| ,...,

n k n n k nX Var X X X




;1:
ˆ;1:

ˆ ˆ1.96
n k nn k n XX 
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How to Apply the Principles?
• The principles provide a generic setup, but are only useful

and practicable under additional assumptions and have to
be operationalized for every time series model/process.

• For stationary AR(1)-processes with normally distributed 
innovations, we can apply the generic principles with relative
ease and derive formulae for the point forecast and the 
prediction interval.

 see blackboard for the derivation in the AR(1) case…
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AR(1): 1-Step Forecast Summary
The 1-step forecast for a mean-zero AR(1) process is:

with a 95% prognosis interval given by

Notice that in practice, we need to plug-in the estimated 
parameters            plus potentially the global mean      that
was subtracted first. This adds additional uncertainty to the
forecast which is not accounted for by the 95% prognosis
interval. Its true coverage hence is probably less than 95%. 

1 1.96n Ex  

1;1: 1
ˆ

n n nX x 

1ˆ ˆ, E  m̂
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AR(1): Simulation Study
We have seen that the 95% prognosis interval does not account 
for the uncertainty that is introduced by parameter estimation. 
A simulation study yields some insight. Repeat 10’000x:

Simulate from an AR(1) process with              and length    . 
Estimate parameters           by MLE and plug-in for producing
a 1-step forecast with 95% prognosis interval.

Finally, it was checked whether the prognosis interval contained 
the true next value of the time series process. The empirically 
obtained confidence levels were:  

1 0.5  n
1ˆ ˆ, E 

n=20 n=50 n=100 n=200
91.01% 93.18% 94.48% 94.73%
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AR(1): k-Step Forecast Summary
The k-step forecast for an AR(1) process is:

with prognosis interval based on

It is important to note that for increasing forecasting horizon
, the point forecast              converges to     and the 

conditional variance to                              , reflecting the 
general parameters of the process.                             

1
2 2
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AR(1): Forecasting the Beaver Data

Time

be
av

er

0 20 40 60 80 100

36
.4

36
.8

37
.2

Beaver Data: 14-Step Prediction Based on AR(1)
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Forecasting AR(p)
The principles are the same, forecast and prognosis interval are:

and  

The computations are a bit more complicated, but do not yield
major further insight. We are thus doing without and present:

1-step-forecast:

k-step-forecast:

If an observed value for            is available, we plug it in. Else,
the forecasted value is used. Hence, the forecasts for horizons

are determined in a recursive manner.

1[ | ,..., ]n k nE X X X 1( | ,..., )n k nVar X X X

1;1: 1 1
ˆ ...n n n p n pX x x     

;1: 1 1;1: ;1:
ˆ ˆ ˆ...n k n n k n p n k p nX X X       

ˆ
n k tX  

1k 
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AR(p): Forecasting the Lynx Data

Time

lly
nx
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Logged Lynx Data: 14-Step Prediction Based on AR(11)
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Forecasting AR(p): Remarks
• AR(p) processes have a Markov property. Given the model 

parameters, we only need to know the last      observations
in the series to compute the forecast & prognosis interval.

• The prognosis intervals are only valid on a pointwise basis, 
and they generally only cover the uncertainty coming from
innovation, but not from other sources. Hence, they are 
generally too small.  

• Retaining the final part of the series, and predicting it with 
several competing models may give hints which one yields 
the best forecasts. This can be an alternative approach for 
choosing the model order   .

p

p
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Forecasting MA(q) & ARMA(p,q)
• Point and interval forecasts will again, as for AR(p), be 

derived from the conditional mean and variance.

• The derivation is more complicated, as it involves the
latent innovations terms                      . 

• If invertibility is required, the issues can be solved. 
However, the forecast requires knowledge about
all past instances of a time series.

• In practice, initial values need to be chosen.

 See blackboard for the derivation in the MA(1) case…

1 2, , ,...n n ne e e 
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MA(1) Forecasting: Summary
• We have seen that for any MA(1)-process, the step 

forecast for all          is trivial and equal to 0. 

• In case of         , we obtain for the MA(1)-forecast:

This conditional expectation is (too) difficult to compute,
but we can get out by conditioning on the infinite past:

• We then express the MA(1) as an AR(∞) and obtain:
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MA(q) Forecasting
• With MA(q) models, all forecasts for horizons           will be 

trivial and equal to zero. This is not the case for         .

• We encounter the same difficulties as with MA(1) processes. 
By conditioning on the infinite past, rewriting the MA(q) as an 
AR(∞) and the choice of initial values for times        , the 
forecasts can be computed.

• We do without giving precise details about the involved 
formulae here, but refer to the general results for ARMA(p,q), 
from where the solution for pure MA(q) can be obtained.

• In R, function predict() implements all this!!!

0t 

k q
k q
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ARMA(p,q) Forecasting
We here face identical problems for forecasting as with MA(q):

For practical implementation, we use the following scheme:

In any case:                              , implemented in predict()
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ARMA(4,1) Forecasting: Example

Time

1800 1850 1900 1950

50
10

0
15

0
20

0

Douglas Fir Data: 64-Step Prediction Based on ARMA(4,1)
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ARMA(4,1) Forecasting: Code
> train <- window(douglasfir, start=1107, end=1900)
> fit <- arima(train, order=c(4,0,1))
> fc    <- predict(fit, n.ahead=64)
> plot(window(douglasfir, 1800, 1964), lty=3, ylab="")
> lines(train, lwd=1)
> lines(fc$pred, lwd=2, col="red")
> lines(fc$pred+fc$se*1.96, col="red")
> lines(fc$pred-fc$se*1.96, col="red")
> title("Douglas Fir Data: 64-Step Prediction…")

We notice that the forecast tracks the true values only poorly. 
Plus, 12 out of 64 forecasts (18.75%) exceed the prognosis 
interval which by construction should only happen in 5% of
the cases. What does this results mean?
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Forecasting with Trend & Season
Time series with a trend and/or seasonal effect can either be
predicted after decomposing or with exponential smoothing. It
is also very easy and quick to predict from a SARIMA model.

• The ARIMA/SARIMA model is fitted in R as usual. Then, we
can simply employ the predict() command and obtain the
forecast plus a prediction interval.

• Technically, the forecast comes from the stationary ARMA 
model that is obtained after differencing the series.

• Finally, these forecasts need to be integrated again. This 
procedure has a bit the touch of a black box approach.

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting for ARIMA Models
We assume that       is an ARIMA(p,1,q) series, so after lag 1 
differencing, we have                      which is an ARMA(p,q).

• Anchor: 

The longer horizon forecasts with          are obtained from:

As we can see, this is the cumulative sum of all terms!
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ARIMA(1,1,1) Forecasting: Example

Time

1800 1850 1900 1950
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Douglas Fir Data: 64-Step Prediction Based on ARIMA(1,1,1)
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Artificial Example where ARIMA Fails

ARIMA(1,1,1) Forecast for ARMA(1,1) with Linear Trend

Time
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Forecasting with SARIMA: Example

Time

lo
g(

A
P

)

1955 1956 1957 1958 1959 1960 1961
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Forecast of log(AP) with SARIMA(0,1,1)(0,1,1)
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(S)ARIMA Forecasting: Summary
• When using a (S)ARIMA model for forecasting, we are able 

to deal with both seasonality and trend. 

• As we can see, the prognosis intervals also cover the effect 
of trend and seasonality. They become (much) wider for 
longer forecasting horizons, different to what we observe 
with stationary series.

• There is no control about the trend forecast and as we have 
seen in the example of an ARMA(1,1) with linear trend, the 
forecast can be poor.

 There is room for decomposition based forecasting!!!
Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series
The principle for forecasting time series that are decomposed
into trend, seasonal effect and remainder is:

1) Stationary Remainder
Is usually modelled with an ARMA(p,q), so we can generate
a time series forecast with the methodology from before.

2) Seasonal Effect
Is assumed as remaining “as is”, or “as it was last” (in the
case of evolving seasonal effect) and extrapolated.

3) Trend
Is either extrapolated linearly, or sometimes even manually.

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

Logged Unemployment in Maine

Time
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

STL-Decomposition of Logged Maine Unemployment Series
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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AR(4) Forecast for Remainder Series
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Trend Forecast by Linear Extrapolation
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

Forecast of Logged Unemployment in Maine
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Simple Exponential Smoothing
This is a quick approach for estimating the current level of a time 
series, as well as for forecasting future values. It works for any 
stationary time series without a trend and season. 

The simple, intuitive idea behind is:

where                                   and

The weights are often chosen to be exponentially decaying,
two examples with different parameters are on the next slide. 
However, there is also a deeper mathematical notion of ExpSmo.

 See the blackboard for the derivation...
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Choice of Weights
An usual choice are exponentially decaying weights:

where (1 )i
iw    (0,1) 
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Simple Exponential Smoothing: Summary
What is it?
- A method for estimating and forecasting the conditional mean

Basic notion:
- is the conditional expectation, which we try to estimate

from the data. The estimate     is called level of the series. 
- is a completely random innovation term.

Estimation of the level: two notions exist…
- Weighted updating:
- Exponential smoothing: 
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Forecasting with Exponential Smoothing
The forecast, for any horizon          is:

Hence, the forecast is given by the current level, and it is 
constant for all horizons    . However, it does depend on the
choice of the smoothing parameter    . In R, a data-adaptive
solution is available by minimizing SS1PE:

1-step-prediction-error:   

The solution needs to be found with numerical optimization.
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Exponential Smoothing: Example

Complaints to a Motorizing Organization

Time
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Exponential Smoothing: Example
> fit  <- HoltWinters(cmpl, beta=F, gamma=F)

Holt-Winters exponential smoothing without trend 
and without seasonal component.

Smoothing parameters:
alpha:  0.1429622 
beta :  FALSE 
gamma:  FALSE 

Coefficients:
[,1]

a 17.70343
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Exponential Smoothing: Example

Holt-Winters filtering
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Holt-Winters Method
Purpose:

- is for time series with deterministic trend and/or seasonality
- is still a heuristic, model-free approach
- again based on weighted averaging

Is based on these 3 formulae:

 See the blackboard for the derivation...
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Holt-Winters: Example

Sales of Australian White Wine

Time
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Holt-Winters: Example

Logged Sales of Australian White Wine
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Holt-Winters: R-Code and Output
> HoltWinters(x = log(aww)) 

Holt-Winters exponential smoothing with trend and 
additive seasonal component.

Smoothing parameters:
alpha:  0.4148028; beta :  0; gamma:  0.4741967 

Coefficients:
a    5.62591329; b    0.01148402
s1  -0.01230437; s2   0.01344762; s3   0.06000025
s4   0.20894897; s5   0.45515787; s6  -0.37315236
s7  -0.09709593; s8  -0.25718994; s9  -0.17107682
s10 -0.29304652; s11 -0.26986816; s12 -0.01984965
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Holt-Winters: Fitted Values & Predictions

Holt-Winters filtering
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Holt-Winters: In-Sample Analysis
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Holt-Winters: Predictions on Original Scale
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Exercise
Data:

 use the Australian white wine sales data...
 ... or any other dataset you like

Goal: 

- Find a good model describing these data
- Evaluate which model yields the best predictions
- Generate a 29-month forecast from this model

Method:

 Remove the last 29 observations and mimic oos-forecasting
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Multivariate Time Series Analysis
Idea: Infer the relation between two time series

and                 .

What is the difference to time series regression?

• Here, the two series arise „on an equal footing“, and we are
interested in the correlation between them.

• In time series regression, the two (or more) series are causally
related and we are interested in inferring that relation. There is
an independent and several dependent variables.

• The difference is comparable to the difference between
correlation and regression.

1 1,( )tX X 2 2,( )tX X
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Example: Permafrost Boreholes

A collaboration between the Swiss Institute 
for Snow and Avalanche Research with the
Zurich University of Applied Sciences:

Evelyn Zenklusen Mutter & Marcel Dettling 
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Example: Permafrost Boreholes
• Given is a bivariate time series with 2*92 observations

• 2 measurements were made everyday in summer 2006

• Series 1: air temperature at Platthorn 3345m

• Series 2: soil temperature at Hörnli hut 3295m

Goal of the analysis:

1) Answer whether changes in the air temperature are
correlated with changes in the soil temperature.

2) If a correlation is present, what is the delay?  
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Air & Soil Temperature Comparison
Air Temperature
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Are the Series Stationary?

0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of Air Temperature

0 5 10 15
-0

.2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF of Soil Temperature



338Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Multivariate Time Series Analysis

How to Proceed?
1) The series seem to have „long memory“

2) Pure AR/MA/ARMA do not fit the data well

 Differencing may help with this

Another advantage of taking differences:

 we infer, whether there is a relation between the changes
in the air temperatures, and the changes in the soil
temperatures. 



339Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – Multivariate Time Series Analysis

Changes in the Air Temperature
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ACF/PACF for Air Temperature Changes
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Changes in the Soil Temperature
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ACF/PACF for Soil Temperature Changes
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Cross Covariance
The cross correlations describe the relation between two time 
series. However, note that the interpretation is quite tricky!

usual „within series“
covariance

cross covariance,
independent from 

Also, we have:

11 1, 1,( ) ( , )t k tk Cov X X 

22 2, 2,( ) ( , )t k tk Cov X X 

12 1, 2,( ) ( , )t k tk Cov X X 

21 2, 1,( ) ( , )t k tk Cov X X 

12 1, 2, 2, 1, 21( ) ( , ) ( , ) ( )t k t t k tk Cov X X Cov X X k     

t
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Cross Correlations
It suffices to analyze , and neglect , but we have to
regard both positive and negative lags .

We again prefer to work with correlations:

which describe the linear relation between two values of
and       , when the series is time units ahead.
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Estimation
Cross covariances and correlations are estimated as follows:

and

,    respectively.

The plot of              versus the lag is called the cross
correlogram. It has to be inspected for both + and – . 
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Sample Cross Correlation
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Interpreting the Sample Cross Correlation
The confidence bounds in the sample cross correlation are only 
valid in some special cases, i.e. if there is no cross correlation 
and at least one of the series is uncorrelated.

Important: the confidence bounds are often too small!

For computing them, we need:

This is a difficult problem. We are going to discuss a few special 
cases and then show how the problem can be circumvented.

12ˆ( ( ))Var k
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Special Case 1
We assume that there is no cross correlation for large lags k:

If                     for              , we have for               :

This goes to zero for large and we thus have consistency.
For giving statements about the confidence bounds, we would 
have to know more about the cross correlations, though.

12 ( ) 0j  | |j m | |k m
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Special Case 2
There is no cross correlation, but and are both
time series that show correlation „within“:

See the blackboard… for the important example showing that
the cross correlation estimations can be arbitrarily bad!
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Special Case 2: Simulation Example
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Special Case 3
There is no cross correlation, and is a White Noise series
that is independent from . Then, the estimation variance
simplifies to:

Thus, the confidence bounds are valid in this case.

However, we introduced the concept of cross correlation to infer
the relation between correlated series. The trick of the so-called
„prewhitening“ helps.

12
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Prewhitening
Prewhitening means that the time series is transformed such 
that it becomes a white noise process, i.e. is uncorrelated.

We assume that both stationary processes and can
be rewritten as follows:

and , 

with uncorrelated and . Note that this is possible for
ARMA(p,q) processes by writing them as an . The
left hand side of the equation then is the innovation.

1,
0

t i t i
i

U a X
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0
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Cross Correlation of Prewhitened Series
The cross correlation between and can be derived from
the one between and : 

Thus we have:

for all      for all   

Now: generate ; estimate cross correlations; and, by using
the confidence bands, check whether they are signficant

1 2
0 0

( ) ( )UV i i X X
j j

k a b k i j 
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Simulation Example
Since we are dealing with simulated series, we know that:

, thus

In practice, we don‘t know the AR-coefficients, but plug-in the
respective estimates:

with

with

We will now analyse the sample cross correlation of and , 
which will also allow to draw conclusions about and .

, , 10.9i t i t tX X E  

1, 1,1 1, 1ˆt t tU X X   1,1ˆ 0.911 

, , 10.9t i t i tE X X   

2, 2,1 2, 1ˆt t tV X X   2,1ˆ 0.822 

tU tV
1X 2X
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Cross Correlation in the Simulation Example
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Cross Correlation in the Simulation Example
We observe that:

- and are white noise processes

- There are no (strongly) significant cross correlations

We conjecture that:

- and are not cross correlated either.

 This matches our „expectations“, or better, true process.

tU tV

1X 2X
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Prewhitening the Borehole Data
What to do:

- ARMA(p,q)-models are fitted to the differenced series

- Best choice: AR(5) for the air temperature differences
MA(1) for the soil temperature differences

- The residual time series are and , White Noise

- Check the sample cross correlation (see next slide)

- Model the output as a linear combination of past
input values: transfer function model.

tU tW
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Prewhitening the Borehole Data
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Transfer Function Models
Properties:

- Transfer function models are an option to describe the
dependency between two time series.

- The first (input) series influences the second (output) 
one, but there is no feedback from output to input.

- The influence from input to output only goes „forward“.

The model is:

2, 2 1, 1
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( )t j t j t
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X X E  
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Transfer Function Models
The model is:

-

- and are uncorrelated for all and .

- and are usually correlated.

- For simplicity of notation, we here assume that the
series have been mean centered.
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Cross Covariance
When plugging-in, we obtain for the cross covariance:

- If only finitely many coefficients are different from zero, 
we could generate a linear equation system, plug-in
and      to obtain the estimates    .   

 This is not a statistically efficient estimation method.

21 2, 1, 1, 1, 11
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Special Case: X1,t Uncorrelated
If was an uncorrelated series, we would obtain the
coefficients of the transfer function model quite easily:

However, this is usually not the case. We can then:

- transform all series in a clever way
- the transfer function model has identical coefficients
- the new, transformed input series is uncorrelated

 see blackboard for the transformation

21
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Borehole Transformed
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Borehole: Final Remarks
• In the previous slide, we see the empirical cross correlations

of the two series and .

• The coefficients from the transfer function model will be
proportional to the empirical cross correlations. We can al-
ready now conjecture that the output is delayed by 1-2 days.

• The formula for the transfer function model coefficients is: 
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Borehole: R-Code and Results
> dd.air <- resid(fit.air)
> coefs <- coef(fit.air)[1:5])
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1)
> as.int  <- ts.intersect(dd.air, zz.soil)
> acf.val <- acf(as.int, na.action=na.pass)

Transfer Function Model Coefficients:
> multip <- sd(zz.soil, na.rm=..)/sd(dd.air, na.rm=..)
> multip*acf.val$acf[,2,1]

[1]  0.054305137  0.165729551  0.250648114  0.008416697
[5]  0.036091971  0.042582917 -0.014780751  0.065008411
[9] -0.002900099 -0.001487220 -0.062670672  0.073479065

[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790
[17] -0.057824007
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Spectral Analysis
Basis: Many time series show (stochastic) periodic behavior. 

The goal of spectral analysis is to understand the 
cycles at which highs & lows in the data appear.

Idea: Time series are interpreted as a combination of cyclic 
components. For observed series, a decomposition into 
a linear combination of harmonic oscillations is set up 
and used as a basis for estimating the spectrum.

Why: As a descriptive means, showing the character and
the dependency structure within the series. There are 
some important applications in engineering, economics 
and medicine.
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Lynx Data
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Wave Data
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Harmonic Oscillations
The most simple periodic functions are sine and cosine, 
which we will use as the basis of our decomposition analysis.

A harmonic oscillation has the following form:

For the derivation, see the blackboard…

• In discrete time, we have aliasing, i.e. some frequencies
cannot be distinguished ( see next slide).

• The periodic analysis is limited to frequencies between 
0 and 0.5, i.e. things we observe at least twice in the series.

( ) cos(2 ) sin(2 )y t t t    
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Regression Model for Decomposition 
We can decompose any time series with a regression model 
containing sine and cosine terms at the fourier frequencies.

, where

for                    with                   .

We are limited to this set of frequencies which provides an 
orthogonal fit. As we are spending     degrees of freedom on

we will have a perfect fit with zero residuals.

Note that the Fourier frequencies are not necessarily the correct 
frequencies, there may be aliasing and leakage problems.

0
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Aliasing
The aliasing problem is based on the fact that if frequency     fits 
the data, then frequencies                       will do so, too. In our 
spectral decomposition, the fastest frequency will be             .  


1, 2, ...  

1/ 2 
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The Periodogram
If frequency      is omitted from the decomposition model, the 
residual sum of squares increases by the amount of:

for 

This values measures the importance of      in the spectral 
decompostion and is the basis of the raw periodogram, which
shows that importance for all Fourier frequencies. 

Note: the period of frequency       is                    . Or we can
also say that the respective peaks at this frequency repeat 
themselves for     time in the observed time series.  
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Raw Periodogram of Lynx Data
> spec.pgram(log(lynx), log="no", type="h")
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Raw Periodogram of Wave Data
> spec.pgram(log(lynx), log="no", type="h")
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Periodogram of a Simulated Series
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Periodogram of the Shortened Series
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The Spectrum
The spectrum of a time series process is a function telling us the 
importance of particular frequencies to the variation of the series. 

• Usually, time series processes have a continous frequency 
spectrum and do not only consist of a few single frequencies.

• For ARMA(p,q) process, the spectrum is continous and there 
are explicit formulae, depending on the model parameters.

• Subsequently, we will pursue the difficult task of estimating 
the spectrum, based on the raw periodogram.

• There is a 1:1 correspondence between the autocovariance 
function of a time series process and its spectrum.
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Example: Spectrum of AR(1)-Processes
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Example: Simulated AR(2)
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Example: Simulated AR(2)
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Estimating the Spectrum
Our goal is estimating the spectrum of e.g. an ARMA(p,q). There 
is quite a discrepancy between the discrete raw periodogram and 
the continous spectrum. The following issues arise:

• The periodogram is noisy, and there may be leakage.

• The periodogram value at frequency      is an unbiased 
estimator of the spectrum value           . However, it is 
inconsistent due to its variability, owing to the fact that
we estimate     periodogram values from     observations.

• Theory tells us that       and       for            are asymptotically 
independent. This will be exploited to improve estimation.         

k
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Smoothing the Periodogram
Due to asymptotic independence and unbiasedness and the 
smooth nature of the spectrum, smoothing approaches help in 
achieving qualitatively good, consistent spectral estimates.

Running Mean Estimator:

The choice of the bandwidth                   is crucial. If chosen 
appropriately, the spectral estimates at the Fourier frequencies 
will be consistent.  
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Daniell Smoother
An option for improving the Running Mean is to use weights. They 
need to be symmetric, decaying and sum up to one. The formula: 

Weighted Running Mean

The challenge lies in the choice of the weights. The Daniell 
Smoother is a Weighted Running Mean with                    for

and                    for           . This is the default in the 
R function spec.pgram() if argument spans=2L+1, see
next slide. Also this estimate is consistent.
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Daniel Smoother for Simulated AR(2)
> spec.pgram(AR2.sim, spans= 13, log="no")
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Double Daniell Smoother
> spec.pgram(AR2.sim, spans=c(5,5), log="no")
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Tapering
Tapering is a technique to further improve spectral estimates. 
The R function spec.pgram() applies it by default, and unless 
you know much better, you must keep it that way. 

• In spectral analysis, a time series is seen as a finite sample 
with a rectangular window of an infinitely long process. 

• This rectangular window distorts spectral estimation in 
several ways, among others also via the effect of leaking.

• Tapering means that the ends of the time series are altered 
to mitigate these effects, i.e. they gradually taper down 
towards zero.
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The Effect of Tapering
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Model Based Spectral Estimation
The fundamental idea for this type of spectral estimate is to
fit an  AR(p) model to an observed series and then derive the 
theoretical spectrum by plugging-in the estimated coefficients

• This approach is not related to the periodogram based 
smoothing approaches presented before. 

• By nature, it alwas provides a smooth spectral estimate.

• There is an excellent implementation in R: spec.ar(). 

Please note that spectral estimates are usually plotted on the 
dB-scale which is logarithmic. Also, the R function provides a 
confidence interval.
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Model Choice: Daniell Smoother
> spec.pgram(log(lynx), spans=c(5,5), log="dB")
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Model Choice: Plug-In
> spec.ar(log(lynx), order=11, log="dB")
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Real World Example

44 46 48 50 52 54 56

0
20

40
60

80
10

0

Frequency (Hz)

S
pe

ct
ru

m
 (d

B
)

Broken Motor Example



392Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – State Space Models

State Space Models
Basic idea: There is a stochastic process/time series which

we cannot directly observe, but only under the
addition of some measurement noise.

Thus: We observe the time series ,
with iid measurement errors

Example: = # of fish in a lake
= # estimated number of fish from a sample

Other: - Dynamic linear modeling
- Regression with time-varying coefficients

tX

t t tY X V 
2~ (0, )t VV N 

tX
tY
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State Space Formulation
State space models are always built on two different equations, 
one of which aims for the process, and the other for the measure-
ment noise:

State Equation: , where

Observation Equation:                        , where

All matrices in this model, i.e.                      can be time-varying.
However, often they are time-constant, if anything, then is
adapting over time. 

Note: such models are usually estimated with the Kalman filter.

1t t t tX G X W  ~ (0, )t tW N w

t t t tY F X V  ~ (0, )t tV N v

, , ,t t t tG F w v
tF
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AR(1) with Measurement Noise
We assume that the true underlying process is an AR(1), i.e.

,  

where

are i.i.d. innovations, „process noise“.

In practice, we only observe , as realizations of the process

,  with , i.i.d.

and additionally, the are independent of ,      for all s,t, 
thus they are independent „observation white noise“.    

1 1t t tX X W  

t t tY X V  2~ (0, )t VV N 

ty

2~ (0, )t WW N 

tV sWsX
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More Terminology
We call

the „state equation“, and

the „observation equation“.

On top of that, we remember once again that the „process 
noise“      is an innovation that affects all future values       
and thus also       , whereas      only influences the current
observation    , but no future ones.

1 1t t tX X W  

t t tY X V 

tY
tV

tW t kX 

t kY 
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AR(1)-Example with α=0.7

Time

yt
1

0 20 40 60 80 100

-2
-1

0
1

State X_t
Observed Y_t

AR(1) Simulation Example



397Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – State Space Models

ACF/PACF of Xt
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ACF/PACF of Yt

Time

se
rie

s

0 20 40 60 80 100

-2
-1

0
1

2
-0

.2
0.

4
1.

0

Lag k

A
ut

o-
K

or
r.

0 5 10 15 20

-0
.2

0.
1

Lag k

pa
rt.

 A
ut

ok
or

r

1 5 10 15 20



399Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – State Space Models

What is the goal?
The goal of State Space Modeling/Kalman Filtering is:

To uncover the „de-noised“ process Xt from the
observed process Yt.

• The algorithm of Kalman Filtering works with non-
stationary time series, too.

• The algorithm is based on a maximum-likelihood-
principle where one assume normal distortions.

• There are extensions to multi-dimensional state space
models. See blackboard for an example how the state
space formulation of an AR(2) is set up .



400Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – State Space Models

State Space and Kalman Filtering in R
## Load the package for Kalman filtering
library(sspir)

## State Space Formulation
ssf <- SS(y = as.matrix(obs), 

Fmat = function(tt,x,phi) {return(matrix(1))},
Gmat = function(tt,x,phi) {return(matrix(0.7))},
Vmat = function(tt,x,phi) {return(matrix(0.5))},
Wmat = function(tt,x,phi) {return(matrix(0.1))},
m0 = matrix(0), C0 = matrix(0.1))

## Kalman Filtering
fit  <- kfilter(ssf)
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Kalman Filter Solution
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AR(1) Simulation Example with Kalman Filter Output
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State Space Formulation of an AR(2)
 see blackboard...
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Dynamic Linear Models
In particular: regression models with time-varying coefficients

Example: the sales of a housing company depend on the
general level of sales in that area at time t, and
on the pricing policy at time t.

This is a regression model with price as the predictor, and the
general sales level as the intercept. They are time-varying:

Here,                    are random elements, noise & perturbations

t t t t tS L P V  

1t t tL L L   1t t t    

, ,t t tV L  
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Simulation Example
 see blackboard...



405Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2016 – State Space Models

Kalman Filtering for Regression
### State Space Formulation
ssf <- SS(y=y.mat, x=x.mat,

Fmat=function(tt,x,phi)  return(matrix(c(x[tt,1],x[tt,2]),2,1)),
Gmat=function(tt,x,phi) return(diag(2)),
Wmat=function(tt,x,phi) return(0.1*diag(2)),
Vmat=function(tt,x,phi) return(matrix(1)),
m0=matrix(c(5,3),1,2),C0=10*diag(2))

## Kalman-Filtering
fit <- kfilter(ssf)
plot(fit$m[,1], type="l", xlab="Time", ylab="Intercept")
plot(fit$m[,2], type="l", xlab="Time", ylab="Slope")
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Kalman Filter Solution
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Summary of Kalman Filtering
Summary:

1) The Kalman Filter is a recursive algorithm

2) It relies on an update idea, i.e. we update the
forecast with the difference .

3) The weight of the update is determined by the
relation between the process variance and the
measurement noise .  

4) This relies on the knowledge of G, F,     ,    . In R
we have procedures where everything is estimated
simultaneously.

1,
ˆ

t tX  1 1,
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Additional Remarks
1) For the recursive approach of Kalman filtering, initial

values are necessary. Their choice is not crucial, their
influence cancels out rapidly.

2) The procedures yield forecast and filter intervals:                     
and

3) State space models are a very rich class. Every 
ARIMA(p,d,q) can be written in state space form, and
the Kalman filter can be used for estimating the
coefficients.

1, 1,
ˆ 1.96t t t tX R   1, 1 1, 1

ˆ 1.96t t t tX R    


